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It is shown that the present procedure used to quantize relativistic systems 
is inconsistent. Three mutually supporting arguments are given to sustain 
this conclusion. First, it is noted that the use of wave functions which 
transform according to any representation of 0(1, 3) whether finite or 
infinite dimensional is inappropriate because such a description allows for 
too many degrees of freedom. The phenomenon of Thomas precession 
indicates that internal structure such as spin and multipole moments must 
be described by mass shell (rest system) three-tensors rather than by un- 
constrained four-tensors. Second, even if representations of 0(1, 3) are 
employed, the momentum space construction for position-time operators, 
which is quite general and is applicable in any Euclidean or pseudo- 
Euclidean space, requires that the infinite-dimensional UIRs of 0(1, 3) be 
used rather than the finite-dimensional, nonunitary spinor representations. 
Third, various anomalous features of the customary kinematic formalism 
can be readily understood provided that this formalism is viewed as an 
ad hoc blend of two other formalisms which, while self-consistent, are 
incompatible except for the trivial case of free one-particle states. These 
criticisms focus attention on a number of specific weaknesses of the kine- 
matic foundations of relativistic quantum mechanics and relativistic 
quantum field theory. These weaknesses are sufficiently serious to require a 
radical revision of the current theory even at the kinematic level. 

1. I N T R O D U C T I O N  

This  p a p e r  presents  an  analysis  o f  re la t iv is t ic  q u a n t u m  k inemat ics .  

A l t h o u g h  f r equen t ly  r e g a r d e d  as t r ivial ,  k i n e m a t i c  cons ide ra t i ons  are  
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extremely important because they form the descriptive foundation for more 
elaborate theoretical constructions. In this paper it is shown that the cus- 
tomary kinematic formalism which constitutes the present foundation of 
relativistic quantum mechanics and relativistic quantum field theory is 
internally inconsistent. The three basic arguments presented in support of 
this thesis are technical rather than philosophical in character. No construc- 
tive solution to these problems is offered. Indeed, the nature of the ditticulties 
suggests that it may not be possible to construct a consistent relativistic 
quantum kinematics. At least, the resolution of the problems will require a 
radical departure from the currently accepted formalism. 

The first argument is based on the construction of fully adequate position- 
time operators. It is generally accepted that an elementary system should be 
described by a wave function which transforms according to a unitary 
irreducible representation (UIR) of the Poincar6 group E(1, 3) (Wigner, 
1939). This assumption leads to an elegant, canonical, momentum space 
description of elementary systems. Unfortunately, the corresponding position- 
time description of such elementary systems is not so firmly based. Con- 
sequently, the momentum space description is used for the construction of 
the position-time operators. Aside from the fact that any position-time 
operator involves some sort of momentum derivative, the construction used 
here bears little relation to previously published attempts (Newton and 
Wigner, 1949; Wightman and Schweber, 1955; Jordan and Mukunda, 1963; 
Fleming, 1965; Barut and Malin, 1968; Johnson, 1969; Broyles, 1970. Also, 
see references cited therein.) The construction is based on the observation 
that momentum space wave functions are intrinsic tensors on the mass 
hyperboloid, a space of constant negative curvature. This observation leads 
to a unique prescription for the momentum derivative as a covariant deriva- 
tive with respect to the intrinsic geometry of the mass hyperboloid. The 
position-time operator is then defined in terms of this momentum derivative. 

In Sections 2 and 3, the position-time operator is defined for the case of a 
particle of spin 1 with either a continuous or a discrete mass spectrum. This 
definition is then generalized to the case of arbitrary spin S in Section 4. The 
operator so defined is Hermitian, covariant, has appropriate commutation 
relations with the four-momentum operator, and is appropriately related to 
the angular momentum operator; however, the components of the position- 
time operator do not commute with each other. In Section 5, the relation of 
the position-time operator to the orbital and total angular momentum 
operators is studied in greater detail and it is shown that a position-time 
operator with components which mutually commute can be constructed only 
if infinite component wave functions which form a basis for a UIR of the 
homogeneous Lorentz group 0(1, 3) are used. (The spin zero case is an 
exception.) Thus in the context of relativistic quantum theory, the existence of 
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fully adequate position-time operators is incompatible with the use of finite- 
dimensional spinorfields. The construction used is available for any Euclidean 
or pseudo-Euclidean space regardless of signature. The parallel construction 
in the well-known case of three-dimensional Euclidean space is presented in 
Section 9 in order that the logic of the argument can be seen in a familiar 
context. 

There are a number of anomalous features of the customary kinematic 
formalism of relativistic quantum mechanics which require a deeper analysis. 
As indicated above, one of these peculiarities is the use of finite-dimensional 
spinor fields which is incompatible with the existence of fully adequate 
position-time operators. That the customary formalism allows only the 
choice of Bose-Einstein statistics if infinite-component fields which transform 
under a UIR of 0(1, 3) are used suggests that the customary theoretical 
connection between spin and statistics is suspect. This suspicion is reinforced 
by the fact that no such connection obtains for the case of Schr6dinger 
mechanics on three-dimensional Euclidean space. An additional problem is 
the fact that the position-time functional, even for a scalar Klein-Gordon 
field, does not transform properly under translations. These and other 
anomalies can be traced to the asymmetric treatment of the positive and 
negative frequency parts of the wave function, that is, to the reinterpretation 
and normal ordering principles. All of the anomalies can be readily under- 
stood provided that the customary kinematic formalism is viewed as an adhoc 
blend of two other formalisms named the space-time density formalism and 
the flux density formalism. 

In the space-time density formalism described in Section 6, an overall 
block space-time viewpoint is adopted in which events everywhere are 
described simultaneously. Note that a similar formalism may be constructed 
for any Euclidean or pseudo-Euclidean space regardless of signature. It is 
useful to compare the formulas of the space-time density formalism with 
their analogs in the familiar formalism used for Schr6dinger mechanics in the 
Euclidean case. It is natural and essential to treat all momentum space star 
classes symmetrically. As a consequence of this symmetry, spin and statistics 
are decoupled; that is, either Bose-Einstein or Fermi-Dirac statistics may be 
used for any spin. The space-time density formalism has a natural positive- 
definite inner product and Hilbert space structure, features which are re- 
quired for the probability interpretation of quantum mechanics. Unfor- 
tunately, the energy-momentum functional is indefinite. 

The flux density formalism, described in Section 7, corresponds to the 
time-slice viewpoint in which space-time is viewed as the union of a family of 
spacelike hypersurfaces. This description isonly appropriate for Minkowski- 
type spaces. The description is presented in terms of flux densities, of charge, 
energy momentum, and angular momentum, which determine the distribution 
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of various quantities on the spacelike hypersurfaces. If desired, these flux 
densities may also be regarded as densities with respect to the mass spectrum. 
It is interesting to note that there is no difficulty in defining a conserved 
position-time flux density the integral of which over a spacelike hypersurface 
yields the corresponding position-time functional. Again, it is natural to 
treat the positive and negative frequency parts of the wave function sym- 
metrically, and again spin and statistics are not coupled. The flux density 
formalism does not have a positive-definite inner product. Instead, there is an 
indefinite sesquilinear form. However, the energy-momentum functional is 
positive definite. The bracket relations and conserved flux densities of this 
formalism are just the familiar ones encountered in classical Lagrangian field 
theory. 

Neither the space-time density nor the flux density formalism has all of 
the features required for relativistic quantum mechanics. In the beginning of 
Section 8, it is shown that these two formalisms are compatible only for the 
trivial case of free, single-particle states, so that the difficulty cannot be 
resolved simply by using both formalisms together. The customary formalism 
represents an attempt to construct a workable system which, however, is only 
partially successful. The remainder of Section 8 is devoted to a discussion of 
the standard but ad hoc procedures used to give the flux density formalism a 
positive-definite inner product and a Hilbert space structure similar to that of 
the space-time density formalism. The resulting customary formalism has a 
number of peculiarities, including the fact that the position-time functional 
does not transform properly under space-time translations. This difficulty 
does not occur in either of the other two formalisms. The existence of such 
peculiarities indicates that the customary formalism is not internally 
consistent. 

The third argument against the customary kinematic formalism is 
presented in Section 10. The history of a structureless, classical, point particle 
is represented by an everywhere timelike world line in Minkowski space. To 
describe a particle with structure, one must specify additional tensors at each 
point on the world line which vary smoothly with proper time. However, the 
phenomenon of Thomas precession shows that these tensors are not free but 
are constrained so that at each point of the world line the tensors are orthogo- 
hal to the tangent to the world line. Such constraints lead to difficulties in 
quantum mechanics because position and momentum cannot be known 
simultaneously with absolute precision. If the four momentum is unknown, 
then all quantities which describe features of internal structure, including 
spin and multipole moments, are also unknown. It is not appropriate to use 
wave functions which transform according to any representation of 0(1, 3) 
whether finite or infinite dimensional because the use of such representations 
ignores the presence of the geometric constraints and allows for more degrees 
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of freedom than actually exist. This additional freedom makes the choice of 
field somewhat arbitrary. Moreover, the constraints must be reimposed by 
means of additional equations of motion which seriously complicate the 
treatment of particles with higher spin. Such difficulties do not arise in the 
nonrelativistic case because time and space are separate so that one may 
simply use representations of 0(3) to describe three-dimensional objects in a 
three-dimensional space. 

2. X" FOR SPIN 1 A N D  A C O N T I N U O U S  MASS S P E C T R U M  

Since particle wave functions are intrinsic tensors on the mass hyper- 
boloid [see Appendix A following equation (A.41)], the Hilbert space 
for a spin 1 particle with a uniform, continuous mass spectrum is the set of 
complex-valued, mass hyperboloid vectors (~b~(M, v)) square integrable with 
respect to the inner product 

(dr,, d/,) = f dl~(M, v)A'~(v)r v)~b(M, v) (2.1) 

where the measure dtz(M, v) is given by (A.17). 
Given a tensor field ~ with components ~ba(M , v) and a Lorentz trans- 

formation A, define the tensor field U(A)4 with components [U(A)4],~(M, v) 
by 

~(A- lv)  b 
[U(A)4]~(M, v) - TV-a-v~ ~bb(M, A-iv) (2.2) 

The operators {U(A)} form a representation of the Lorentz group since 

- 1  b ~(A1 v) [U(A~)(U(Au)~b)]a(M, v) = ~ (U(A2)~)b(M, Ai-~v) 

a(Ai-%)b ~(A~~Ai-%)~ ,t, (M 
-- ~v ~ ~(Ai-%)------~ r~, , A~-~Ai-Xv) 

eft&&)- lv)~ 
~bb(M, (A~A2)- %) 

= [U(A~A2)r v) (2.3) 
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Moreover, this representation is unitary with respect to the inner product 
(2.1): 

U(A)4,) 

f dl~(M, v)A'~b(v)[U(i)~b]*(i, v)[U(i)$]b(M, v) 

f O(A- lv)a . "M = dl~(M, v)a'~(v) 0(A0v a- ~v) ~ ~*(M, A-~v) ~ (ka( , A-iv) 

= f dt~(M, A-~v)Aab(A-av),d,*(M, A-lv)4,b(M, A-iv) 

= (r r (2.4) 

where the transformation property of the metric tensor A"b(v) and the fact 
that dt~ is an invariant measure have been used. 

In this Hilbert space, the position-time operator is represented by the 
momentum energy gradient given by (A.38). Since the wave functions are 
mass hyperboloid vectors rather than scalars, the partial derivative O/Ov b is 
replaced by the covariant derivative 3/3v b. Thus 

(~b, Xu(~) = i f dlz(M, v)[Aab(v)$*(M, v)u'(v) (M v) OM ~ .... 

1A~b(v)Aca(v)~*(M, v)uS(v) 3q~b(M' , ~v ~ v)] 

and 

f [ cq,&*(M, v) u~,(v)4)~(M, v) (X'~b, ~) = - i  dlz(M, v) Aab(v) c~ M 

(2.5) 

1A~b(v)Aca(v)uU.o(v ) 3~b*(M, v) ~bb(M, v)] 
�9 3v a 

(2.6) 

Hermitian provided (2.5) and (2.6) are equal. This The operator X" is 
demonstration is carried out in Appendix B. It is clear from the covariant 
structure of X" that the matrix elements transform as a Minkowski four 
vector under the Lorentz transformations defined by (2.2); however, for 
completeness, an explicit demonstration is given in Appendix C. 

For convenience, write the operator X" in the symbolic form 

[ ~ 1 ACa(v)u~,c(v ) 3 ]  (2.7) X u = i uU(v) OM ~'~ 
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Then 

[ ~ 
X a X V  = (02  uU(v) OM M 

[ 0 1 A c a ( v ) u , c ( v )  3 ]  
• uV(v) OM M Yv a 

= - u"(v)uv(v) ~ - ~  + u"(v)AC~(v)u~.o(v) 

8 0  1 u.(v)Aod(v)u~o ~ 0 u~(v)A~(v)u"a(v) ~ 0 m  
M " 3v a O M  

1 ~b . ~ 0 1 3 2 
~/: A (v)u,.,(v)u,b(v) ~ + ~-~ A~b(v)A~ a(v)u~.,(v) ~vb3va 

A~176 ~u~.o ~ ] + p ]  (2.8) 

Using (A.37) in the last term, one finds that, except for the term containing the 
second-order covariant derivative, X " X  ~ is symmetric in t* and v. One obtains 

1 
[X", XV]~b = ~ [u,U~(v)u,~b(v) - u,~(v)uUb(v)] (2.9) 

The momentum-energy operator is just the multiplicative operator 

P" = MuU(v) (2.10) 

One readily obtains 

[ X ", P "  I = i [u"(v)u~(v) - A'~b(v)uU, a(v)u~,o(v) ] (2.11) 
o r  

[X" ,  P q  = ig "~ (2.12) 

Define the orbital angular momentum by 

L"" = X u P  ~ - X ' P "  (2.13) 

Since the operators X u and P"  are covariant and Hermitian, the operator 
L"" is as well. It follows from the commutation relations (2.9) and (2. I2), that 

[L" ' ,  L ~176 = i[gaOL v~ + g ' * L  u~ - gUlL ~o - gVOL"~ 

- i[u.(v)uO(v)SVo + u~(v)u"(v)S "o 

- u"(v)u*(v)S  "~ - u ' ( v )u~  (2.14) 

where 

s."; = i[u."o(v)u.~b(v) - u~o(v)u"b(v)] (2.15) 
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The explicit form of L u~ is 

L u~ = iA~b(v) [u~(v)u~a(v) -- u'(v)uf~(v)] ~ (2.16) 

This operator is independent of M and consequently can be used even in the 
case of a discrete mass spectrum. 

The commutation relations (2.9) and (2.14) are not those desired for the 
position-time and orbital angular momentum operators. The problem arises 
from restricting attention to wave functions describing a single spin. The 
problem is further discussed and resolved in Section 5. 

3. X ~ FOR SPIN 1 AND A DISCRETE MASS SPECTRUM 

For a particle with spin I and a given fixed mass M, the Hilbert space 
is the set of complex-valued, mass hyperboloid vectors {~ba(v)} square integ- 
rable with respect to the inner product 

(~b, ~) = --~-- d/z(v)A ab(v)~b*(v)6b(v) (3.1) 

The factor M 2 / 2  has been chosen in order to agree with the usual normaliza- 
tion. The representation of the Lorentz group given by (2.2) is not affected by 
this change in the Hilbert space. 

The expression for the position-time operator must be changed since the 
mass is now a constant. Define 

(~b, X"•) = i - 7  d/~(v) - 1 Aab(v)ACa(v)~b,(v)uU.c(v ) 86b(V)sv a 

2 3 A a~ (v)u~(v)$o(v)] (3.2) 

and 

M 2 8~*(v) (XU~b, 4)= i--~-- f d~(v) [ 1 Aab(v)ACa(v)~ uU.,(v)(~(v) 

3 aob(v)q,.(v)u~(v)r +~--~ 

or symbolically, 

x "  = - - - i  AO~(v)ufo( v + ~ u"(v 
M 

This operator is clearly covariant (see Appendix C). 

(3.3) 

(3.4) 
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o r  

The momentum operator P" is defined as before in (2.10) and 

[X  ~, P~] = - iA~a(v)uUc(v)u~,a(v) = i [g"" - uU(v)u'(v)] (3.5) 

[ X  ~, P~] = i ( g  ~'~ P~'P~.]M~ ] (3.6) 

The orbital angular momentum is defined as before in (2.13) using the 
new X", and the explicit expression for L "~ is just that given in (2.16). 

4. X u FOR GENERAL SPIN AND EITHER A DISCRETE 
OR A CONTINUOUS MASS SPECTRUM 

The results of Sections 2 and 3 will now be generalized to include the case 
of a particle with arbitrary integral or half odd integral spin. For the most 
part, the mass variable M will be suppressed. For the case of  integral spin, 
the generalization is straightforward. Simply use wave functions ~b~bc... (v) 
which are mass hyperboloid tensors of  higher order and decompose them 
into irreducible components using the tensors A~O(v), A,b(v), E~b*(V), and 
%o,(v). For example, for a second-order tensor ~b~b(v), one has 

~ob(v) = ~~ + AO~(v)~(v)qoo(v) + ~ ( v )  (4.1) 
where 

r = SA~(v)~ob(v  ) 
~b~l)(v) = �89 (4.2) 
~ ( v )  = �89 + ,Lo(v)] - ~Ao~(v)AC"(v)~,~,~(v) 

Then ~b~)(v) is a suitable wave function for a spin 2 particle. Moreover, the 
position-time operators are defined by (2.7) and (3.4), respectively, and the 
demonstrations of covariance and Hermiticity again go through with only 
minor modifications. 

The presence of  the metric tensor A~b(v) in the inner product (2.1) or 
(3.1) complicates the introduction of Pauli spinors required for the description 
of half odd integral spin. This ditficulty can be overcome by employing at each 
point of the mass hyperboloid a basis normalized to unity, that is, 

na"(v) = ( 1 -  V)uU,~(v) (4.3) 

where 
g~,vn,~"(v)nbV(v) = 3~b (4.4) 

The new wave functions for spin 1 ~b~'~ called Wigner wave functions, are 
related to the tensor wave functions by 

~b~W)(v) = ( 1 -  V)~b~(v) (4.5) 
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and the inner product becomes 

(~b, 4) = f dtz(v)~b(~'~ (4.6) 

where the repeated index is summed and there is no longer any distinction 
between upper and lower indices. 

The representation of the Lorentz group is given by 

[U(A)~lkW'(v) = [B-I(v)AB(A-lv)Lb~F'(A-lv) (4.7) 

where B(v) denotes the pure Lorentz transformation which takes u"(0) into 
u~(v) and 

[B- I(v)AB(A - lv)]a~ = - naU(v)A~vnbV(A- %) (4.8) 

is the well-known Wigner rotation (Moussa and Stora, 1968) [compare with 
(A.41)]. Clearly, the transformations (4.7) are unitary with respect to the 
inner product (4.6). Since 

[U(A1){ u(a=)~b}](~'(v) 

= [B- l(v)h~B(Ai- ~v)]~0[U(h2)~b](0W)(hi - ~v) 

= [ B - I ( v ) A ~ B ( A ; % ) ] a b [ B - ~ ( A ~ v ) A 2 B ( A ; ~ A - * v ) ] b c ~ b ( ~ W ' ( A g I A ; % )  

= [B- ~(v)(A,A2)B((A1A2)- ~v)]=b~b?)[(h~h2)-*v] 

= [ U(h~h2)r (4.9) 

the group property is also satisfied. 
Because dv '~ transforms as a tensor with an upper index, the combination 

dv,~ 
[1 - �88  (4 .10 )  

transforms according to a Wigner rotation. 
In order to define the covariant derivative for the Wigner wave functions, 

it is necessary to translate the equation for parallel transport of a tensor field 
along a specified curve into the new notation. Let ~b~(v + dv H -+ v) denote 
the components of the field ~b evaluated at v + dv parallel translated to v 
along the infinitesimal curve defined by dr. Then 

(4.11) 

Using (4.5) and (A.33) and retaining only terms up to first order in dv ~, one 
obtains 

1 f v  '~ dv b - dv"vb'l . ,~, . . .  
~b(~)(v + dvl[ ~ v )  = ~(~)(v + dv) - ~ -- ~v-~v)]fqso '(v) (4.12) 
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In Appendix D it is shown that (4.12) may be written in the form 

~to>(v + dv[[-->v) = Ra~,(v, v + dv)~to)(v + dv) (4.13) 

where R,b(v, v + dr) is the Wigner rotation corresponding to the pure 
Lorentz transformation which takes v + dv into v. 

The covariant derivative of the Wigner wave function is defined by 

8 r -  + Avll v) - 
3v b r = .,u, - - -b - -  - ~ - - -  (4.14) - -  a~b-.o~ Av 1[1 - 4(v'v)] f 

Using (4.13) and (D.14), one obtains 

8~b(~to'(V)3v b = (1. _ @_,v v)Or b 2ivc(S~b)~a~b(ato'(v) (4.15) 

The operators X" and P" are given by 

X" = i uU(v) OM ~ n .  (v) g-~ to (4.16) 

o r  

and 

X " =  -~ri [naU(v)(~vv~)+t0 23 uU(v)] (4.17) 

P" = Mu"(v) (4.18) 

where (4.16) and (4.17) correspond to (2.7) and (3.4), respectively. Again, the 
respective commutation relations (2.12) and (3.6) obtain. 

These results may be readily generalized to the case of arbitrary integral 
or half odd integral spin s. A particle of spin s has a Wigner wave function 
r with 2x + 1 components, ;~ e { - s , - s  + 1 . . . .  , s -  1, s}, which is 
square integrable with respect to the inner product 

(r = f 
(4.19) 

Under the Lorentz transformation A, these wave functions transform accord- 
ing to 

[U(A)6](~W)(v) D (*) B-1 v AB A- iv  !to) A- iv  = a.[ ( ) ( )]~b ( ) (4.20) 

where D (s) is the usual (2s + 1) • (2s + 1) unitary irreducible representation 
of the rotation group. Let S,,b denote the generators of D (s), then 

[' ] D(S)(R) = exp ~ o)abS,~, (4.21) 
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where 

Rca = e x P  [2 Co,,~(S,,b)ca ] (4.22) 

The covariant derivative is defined by 

(4.23) 
A v a ~ O  1. ) 

The explicit expression is 

3~<a~')(v) (1 _ v_~) 0~b~ff)(v) i 
8v ~ = Ov,~ ~ vC(S~)au~b~)(v) (4.24) 

The expressions for the position-time operator X" are again given by 
(4.16) and (4.17) for the continuous and discrete mass spectrum cases, 
respectively. The orbital angular momentum operator L ~ is given by 

L U ~ = i [ u U ( v ) n a ~ ( v ) -  uV(v)na~(v)](~)w (4.25) 

in either case. 
Clearly, (4.23) and (4.24) generalize in a straightforward way to cover 

the case of a tensor with an arbitrary number of spin indices of whatever spin 
types desired. 

5. TOTAL ANGULAR MOMENTUM juv 

The total angular momentum operator JU~ is defined as generator of the 
representation of the Lorentz group. Expressions for both the special case of 
spin 1 (2.2) and the case of general spin s (4.20) will be given. Set 

where 

and 

U(A) = exp [2 ~%~JU~ ] 

A~'v = exp [2 c%,,(P'~ ] 

(5.1) 

(5.2) 

(IV*) uv = -- i(gPUg ~ -- gPVg"~') (5.3) 

The matrices I u~ satisfy the commutation relations 

[iu~, io,~] = i(gOUi,,~ + g~f fm,  _ gPVi,  u _ g,~Ui~v ) (5.4) 
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The evaluation of  the operator j ,v  is straightforward and is carried out 
in Appendix E first for the case of  spin 1 and then for the case of  general spin 
s. The result may be written 

J"~ = L "~ + S uv (5.5) 

where L ~ = X " P  v - X W " ,  X ~ is the appropriate position-time operator, 
and S u~ is just the projection of the spin matrices (Sab)a, onto the basis 
naP(v). For  the case of general spin s 

S u~ = �89 - n,/(v)nb"(v)]Sab (5.6) 

For  the case of spin 1, S "~ is given by (2.15). 
Thus for a particle with given spin s, it is possible to define a position- 

time operator X" which is Hermitian and covariant, has the proper commuta- 
tion relations with the momentum-energy operator P", and leads in the 
standard way to an Hermitian, covariant orbital angular momentum operator 
L u~, which in turn is suitably related to the total angular momentum operator 
J"~. However, [X ~, X ~] ~ 0! Nevertheless, the operator X" defined above is 
the best possible given the restriction to a single spin s as the following general 
argument shows. 

Let J"~, P", and X ~ be Hermitian operators which satisfy 

[ J ~ ,  S ~ q  = i ( g . ~ S ~  + g ~ S  "~ _ g.%r~. _ g ~ j . o )  

[pa,  ju~] = i(g~,~p. _ g~,up~) 

[X a, ju~] = i(g~wX~, _ gauX~ ) (5.7) 

[pu,  p~] = 0 

[ x . ,  x q  = o 

as well as one of the relations 

[X ~, P q  = ig.~ 

[X", P~] = i ( g " "  P " P ~ ]  ~-~ ] (5.8) 

[NOTE: The operators J"~, pu, X u previously defined satisfy all of the con- 
ditions (5.7) and (5.8) except for [X ", X ~] = 0.] 

Then define the operator L ~ as in (2.13). L ~ is Hermitian since both P"  
and X u are. Moreover, 

[L  .v, L D~] = i(gUOL vo + gWLU" _ gU~LVD _ g~OLUO ) 

[ X  ~', L uv] = i(g~tvX u - gauXV) (5.9) 

[pa,  LUV] = i ( g a v p .  _ g a . p v )  
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The relations (5.9) follow directly from the commutation relations of X" and 
P". Next, define S "v by 

S,V = j ,v  _ L,V (5.10) 

which is Hermitian since J"~ and L "' are. From (5.7) and (5.9), one obtains 

[X ~', S "~] = 0 
[Pa, S "~] = 0 (5.11) 

[L ~ S" ']  = 0 
Since 

[ j , , , j D , ]  = [L"', L p`] + [S "~, S o~] (5.12) 

it follows that 

[S"',  S D*] = i(guPS w + gwS"~  - g"aS~~ - gv~ 9 (5.13) 

Since the S "~ are Hermitian and satisfy (5.13), they are the generators of a 
unitary representation of the homogeneous Lorentz group (Naimark, 1964). 

The Pauli-Lubanski operator W, is given by 

W ,  =- -�89176176 ~ = __~gltOo~ ~  ~oaD~.t (5.14) 

If  P"  and g"~W, W~ are simultaneously diagonalized, then 

g"~WuW, = - M 2 s ( s  + 1) (5.15) 

where s is the particle spin quantum number. Clearly the operators X", L "~, 
and S "~ do not commute with g"~W, W,;  consequently, in a basis in which the 
latter operator is diagonal, the former operators must have nonzero, off- 
diagonal matrix elements which connect states with different spin. Clearly, 
the operators X", L "v, and S "~ defined earlier in this paper [(4.16), (4.17), 
(4.25), and (5.6)] are the restrictions of more general operators to a subspace 
with definite spin s, and this truncation explains why the restricted operators 
do not and cannot satisfy all of the desired commutation relations. 

The principal conclusion to be drawn from the above discussion is that 
quantum mechanics is incompatible with f inite-dimensional spinor fields 
given special relativity and the desirability of fully adequate space-time 
operators. 

6. FOUR-DIMENSIONAL DENSITIES AND 
THE STATIC SPACE-TIME DESCRIPTION 

There are two modes for describing events in space-time. The first views 
space-time as a single block and presents the description in terms of densities 
in four-dimensional space-time. The second considers a family of spacelike 
hypersurfaces or time slices and uses flux densities to describe conditions on 
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each hypersurface. The former viewpoint is developed in this section and the 
latter viewpoint is developed in the following section. Later, in Section 8, it 
will be argued that the customary kinematic formalism used in relativistic 
quantum mechanics is irrational because it is an a d  h o c  blend of these two 
formalisms which are mutually incompatible. 

With the exception of the case of spin zero, it was shown in Section 5 
that wave functions which transform according to a unitary representation 
of the homogeneous Lorentz group 0(1, 3) must be used if one requires the 
existence of a position-time operator X ~ which is fully adequate in the sense 
that the conditions (5.7) and (5.8) (especially, [X ", X v] = 0) are satisfied. 
Moreover, the wave functions must represent more than a single spin. Since a 
unitary representation may be decomposed into a direct sum/integral of 
unitary irreducible representations, it is natural to use a unitary irreducible 
representation of 0(1, 3). Since all such representations are infinite dimen- 
sional, the wave function represents an infinite spin tower of particles. 

The unitary irreducible representations of 0(1, 3) (Naimark, 1964) may 
be labeled by a pair of numbers [ko, c]. For a representation in the principal 
series 

c = i p  - ~ < p < ~  
ko ~ {0, �89 1, ~, 2, { . . . .  } (6.1) 

For a representation in the complementary series 

0 < e <  1 k 0 = 0  (6.2) 

The identity representation corresponds to the pair [0, 1]. A basis for a 
representation in either the principal or complementary series may be labeled 
by a pair of indices (j, m) which range over the values 

m = - j  - j +  1 . . . .  , j -  1, j  
j = k0 ko + 1, k0 + 2 , . . .  (6.3) 

and the representation is infinite dimensional. The values of the Casimir 
operators in the representation [/co, c] are given by 

C1 = � 8 9  p~ = ko  2 + c 2 - 1 

C2 1_,, c~c~v - i koe  (6.4) = 4 r. .kA/~ Vj..i ~ = 

The physical meaning of the quantum numbers (p, k0) will not be dis- 
cussed here. It would seem that the use of wave functions which transform 
under a representation of 0(1, 3), whether finite or infinite dimensional, 
implies that one's model of  a particle is a f o u r - d i m e n s i o n a l  structure moving 
along a world line in Minkowski space-time rather than a world line tube 
with a small three-dimensional cross-section. The reader is referred to the 
end of Section 10 for further discussion of this point. In any case, in this and 
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the following section, it is assumed that physical states correspond to rays in 
the Hilbert space of infinite-component, complex-valued wave functions 
defined on Minkowski space-time, ~jm(x), which are square integrable with 
respect to the inner product 

(r ~) = ~ f d4xr162 (6.5) 

which transform under the Lorentz group according to one of the above 
unitary irreducible representations 

[U(A)~b]jm(x) = U(A)~m,r=,~bj.m,(A-~x) (6.6) 

and for which the mass operator ( -  E]) is positive. Denote the momentum 
space wave functions for positive and negative frequency by ~k~)(M, v) and 
~b~)(M, v), respectively. Under a Lorentz transformation, both of these wave 
functions transform according to (4.20). [The usual scheme employs the 
conjugate representation D (st for the negative frequency wave function. The 
reason for this modification will be made clear below.] Under a translation, 
x --~ x + a, these wave functions transform according to 

[U(a)~b<~)]sa(M, v) = exp [+ igu~Mu~(v)aV]~<~)(M, v) (6.7) 

The wave function ~bsm(x) may be expressed in terms of the wave func- 
tions .i.< ~)r ~, v) through the expansion 

Tg d 

where 

+ fj~-)(x; M, v, s, A)~b<s~-)(M, v)] (6.8) 

1 
fj~)(x; M, v, s, A) = ~ exp [g  igu,MuU(v)x']Bj,n(v, s, A) (6.9) 

and the functions Bjm(V, s, A) are defined by (F.2) in Appendix F. 
Using the orthonormality relations 

~ f  ' , A, , fc:~u d~xA~)'(x; M' ,  v ,  s ,  ,ajm , , 

- 8s,88a,aS(M' - M)[  1 - �88 ' _ ~ ] o t,v - v )  ( 6 . 1 0 )  

y f a4xf  ,'(x; M', ,', s', M, a) = o 
7~ 3 
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one obtains for the relations inverse to the expansion (6.8) 

~b(,~ :)(M, v) = ~ f d~xfj~)'(x; M, v, s, A)~bm(x ) (6.11) 

Moreover, 

= ~_. ~ d#(m, v)[$~r(M, v)$~t'(M, v) + $(~r(M, v)$(~"(M, v)] 

(6.12) 

The wave functions (6.9) satisfy the completeness condition 

~f a~,(M, v)rg,+~;(x'; M, v, ~, a) f~, ' (~;  M, v, ~, a) 

+ fj~,7~)(x'; M, v, s, ~,)fj~-r(x; M, v, s, A)] = am3m,m~(x' - x) 

(6.13) 
where 

1J ~_(x) = ~ d~(M, v){exp [ - i g ,  vMu"(v)xq + exp [ig,,Mu"(v)x']} (6.14) 

The interpretation of ~(x) is important. It is not a propagator. It is just the 
restriction of the four-dimensional Dirac 8 function 84(x) to the case in which 
only timelike momenta are included. For the class of wave functions with a 
timelike momentum spectrum, _8(x) plays the role of 84(x). In particular, _~(x) 
satisfies the relations 

_ 8 ( - x )  = _~(x) 

~jm(x) = f d4x'~(x - x')~sm(x') (6.15) 

- x')  = f d~x"~(x - x")a_(x" - x')  a_(x 

Variational derivatives of functionals of the fields may be defined by 
setting 

~t ,m , (X ,  ) = ~ m , ( X ,  ) = 8j, j~m,m~_(X ' -- X) 

(6.16) 
&t.<*,tM v ) (*,. [ ~( ] 3~bsa (M, v) -- v.v) aBa/v't. v'~ ~ , = 3~,~SwxS(M' - M) 1 

, S # A ! ( M ' ,  v ' )  a.'.'y.8.a.*r~M'~ , v ' )  - -  �9 - v )  
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and by assigning zero to the other possibilities. The anti-Poisson bracket ( + )  
and the Poisson bracket ( , )  of two functionals f and g of the fields $j~(x) 
and ~b*m(X) are defined by 

[ 8f  8g + 8g 8f ] (6.17) 
a~ttm(X ) S~m(X ) -- a~btrn(X) a~b~m(X) 

For the basic fields, one may use either type of bracket. One obtains 

{~bfm,(X'), ~b~m(X)}• = ai'.CSra'ra~.(X' -- X) (6.18) 

while the other brackets are zero. Whenever at least one of the two functionals 
f a n d  g is of even degree in the basic fields, the Poisson bracket ( - )  should be 
employed. 

It follows from (6.11) that 

{~,~,(M', v'), d/~"(M, v)}~= = 8~,~Sw~'(M' - M)/I" - - - 3~v'v)/a'a(v' - v) 

(6.19) 

{~br ', v'), ~b~-'*(M, v )}~=  ',,,aa,aa(M' - M) [  1- / l~v 'v)]aaa(v  ' -  v) 

while the other Poisson brackets are zero. In terms of the momentum wave 
functions, the Poisson bracket (6.17) is given by 

{f, gL = f dv(M, v) 

[ (  $f ' g  
x 8,d,~ ~ ,  v) &"(~',a +)'tMk , v) + 

( ,g ,I 
-+ v) v) 

8#~~(M, v) 8d//~"(M, v) 

8g 8f ) ]  
+ 8~br163 v) 84~-)'(M, v)' 

(6.20) 
The operators X u, PU, L uv, and juv are most conveniently described with 

respect to the wave functions ~b~.~)(M, v): 

$~-~)(M, v) = Bird(v, s, A)~b~)(M, v) (6.21) 

where the Bjm(V, s, A) are given by (F.2). Under  a Lorentz transformation, 
these wave functions transform according to 

Utm ;fm,(A)~bj, m,fM , A- iv) (6.22) [ f(A)~b ~ ~)]sm(M, v) = <~) 

In this basis, the position-time operator is simply the momentum-energy 
gradient (A.38): 

yu,h(• V) = + i UU(V) a Aab(v)UU.a(V) ~VbJWYm k , V) - -  wSm k . . . . .  . 8M 

(6.23) 
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In agreement with (6.7), the operator P~ is given by 

P~'~b~m)(M, v) = + Mu~'(v)~b~m)(n, v) (6.24) 

The operators for orbital angular momentum L ~' and total angular momen- 
tum J~' are given by 

L~,,t/*)t A,r v) = (XuP" - X'P ~)r v) 

= iA'a'(v)[u"(v)uV, a(v) - uV(v)u~(v)] ~ ,g*)(M, v) , cqt)b y j m  ~ , '  

(6.25) 
and 

try ( •  JU~b~m)(M, v) = ,.,ru~a't~)t A/wtm ~" ,  v) + Sjr,,:j,~,~bj,m,(M, v) (6.26) 

The operators X ~', P~', U", ju,, and S"'  defined above are Hermitian and 
satisfy the relations given in (5.7)-(5.9), (5.11), and (5.13). These operators 
are related to those constructed in Sections 2-4 in the following way. Trans- 
form the expressions (6.23)-(6.26) to the basis ~b<~:)(M, v). Then discard the 
terms which are not diagonal in the spin s. The operators so obtained are 
just those defined in Sections 2-4. The reason for the peculiar commutation 
relations of these truncated operators is now clear. 

To each operator Ope{Xu, P~',L~',J "', S ~'~} there corresponds a 
functional Op [~b*, ~b] given by z 

Op [~b*, ~b] = ~ f d#(M, v)[~b~+'*(M, v) Op ~-,m't'(+'r ~r,..., v) 

+ ~b~)'(M, v) Op ~bS~)(M, v)] (6.27) 
For example, 

Pu[~b*, ~b] = ~ f dlz(M, v)MuU(v)[~b<~:)*(M, v)~b~"(M, v) 

- ~bCsz)'(M, v)~br v)] (6.28) 

One can readily show that 

{P,[~b*, ~b], ~bjm(X)}_ = -iO~'~bj,,,(x) (6.29) 
and 

{Pu[~b*, ~b], P'[~b*, ~b]}_ = 0 (6.30) 

An entire set of such relations exists which corresponds to the expressions 
(6.23)-(6.26) and to the commutation relations (5.7)-(5.11) and (5.13). 

2 A corresponding "matrix element" Op [~b*, 4,] may also be defined. 
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Using (6.8) and (6.21), the operators given by (6.23)-(6.26) may be 
reexpressed in terms of the basis ~bjm(X ). Then, the functionals (6.27) have the 
form of integrals over space-time densities 

Op [~b*, ~b] = ~ f d~x~*m(X) Op ~bsm(X ) (6.31) 

Neither the operator po nor the corresponding functional P~ ~b] is 
positive definite. This is reasonable since it is only the functional for the 
energyflux through a spacelike hypersurface which should be positive definite. 
Functionals related to flux densities are discussed in Section 7. 

The eigenfunctions of the position-time operator in the basis (6.21) are 

~b <~r~Ar v; x, ~) = ajm(y ) exp [~ ig~vMu~'(v)x v] (6.32) J m  k x r a  , 

where the complex numbers aj,,(y) are the components of a vector in the 
infinite-dimensional 0(1, 3) group representation space and where ~, denotes 
the eigenvalues of two independent, noninvariant, commuting operators 
formed from the S ~v. (The eigenvalues of the Casimir operators are already 
fixed by the choice of representation.) The inner product (6.12) gives 

~ f  c+,* ,,)~b~+,(M, v; x, ~,) (r ~'), ~b(x, y)) = d~(M, v)[~bym (M, v; x', 

+ ~b~m>*(M, v; x', ~")~b~m~(M, v; x, y)] 

= 3r,v3_(x' - x) (6.33) 

Thus, wave functions with different space-time eigenvalues are not orthogonal. 
However, since the role of 34 is replaced by -3 for the space of functions with 
timelike momentum spectrum [see (6.15)], these wave functions are as 
orthogonal as possible given the exclusion of lightlike and spacelike momenta. 

From a mathematical point of view, the above discussion of the Fourier 
transform on Minkowski space-time may be extended to include functions 
with a lightlike and spacelike momentum spectrum (see Appendix G). If this 
is done, then complete sums over all momenta will yield the four-dimensional 

function instead of the distribution _3, and eigenfunctions of the position- 
time operator which are properly orthogonal can be defined. This formalism 
very closely parallels that used in Euclidean space. In particular, the definition 
of the position-time operator given in this section is the direct analog of the 
definition of the position operator usually employed in the Euclidean case. 
Furthermore, the fact that either Poisson brackets or anti-Poisson brackets 
may be used for the basic fields [(6.17), (6.18)] indicates that there is no spin- 
statistics theorem. This absence of a spin-statistics relation also obtains in the 
Euclidean case. The construction of position operators in the Euclidean case 
is discussed in Section 9. 
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7. THE SPACELIKE HYPERSURFACE DESCRIPTION AND 
FLUX DENSITIES 

In Section 6 the fundamental kinematic formalism for the description of  
particle states in space-time was developed. In that formalism, the events of  
space-time, past, present, and future, are described all at once a s  a block. 
In order to examine the development of a system in time, it is necessary to 
describe the same space-time events in terms of  quantities defined on the 
members of a family of spacelike hypersurfaces which form a disjoint decom- 
position of  space-time. The purpose of this section is to develop the kinematic 
formalism required for such a description. The quantities appropriate for the 
overall space-time description are four-dimensional space-time densities 
and the integrals of  such densities over four-dimensional volume elements. 
For  the description of time evolution, the relevant quantities are also four- 
dimensional densities and integrals of such densities. However, the basic 
quantities are now one-dimensional densities with respect to the mass spec- 
trum and three-dimensional f lux densities with respect to the hypersurfaces. 
The momentum space description is the same for both cases. It is emphasized 
that the formalism may be developed for either a continuous or a discrete 
mass spectrum. The formulas given are appropriate for the case of  a con- 
tinuous mass spectrum. For the most part, simple restriction of these for- 
mulas and a change of normalization yield the formulas appropriate to the 
case of a discrete mass. Cases where this is not so are noted. 

The expansion (6.8) may be decomposed into an integral over fields with 
definite mass: 

f dM 2 ~bjm(x) = ~ ~b~2'(x) (7.1) 

where 

+ M, v, s, v)l 
and 

(7.2) 

(['7 + M2)~b~g2)(x) = 0 (7.3) 

Given two wave functions ~b~2)(x) and ~}~2)(x) which satisfy (7.3), one 

where 

(M2)* (M2) = 'Pjr, (X)0,~j,, (X) (7.4) 
Jm 

0B 0A 
AOUB = A Ox" Ox B (7.5) 

may define the four-vector flux density 
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for arbitrary fields A and B. The flux density (7.4) is conserved 

8uj~(MS; x) = 0 (7.6) 

Then one may define a sesquilinear form <~b ~u=), ~b<u~)> by 

<~(M~), q~(~> = i do,(x)#}~)'(x)O"r~l~2)(x) (7.7) 

It follows from (7.6) that (7.7) is independent of the spacelike surface e. 
The wave functions (6.9) satisfy 

((2,0~sf~(M, v', s', a'), (2,0~/sf~*~(M, v, s, a)) 

= + 3~,~3a,a2M[1- ~(v'v)] 838(v'-  v ) ( 7 . 8 )  

((2rr)l/2f<~)(M, v', s', A'), (2*r)~/2f~)(M, v, s, A)) = 0 

The normalization used in (7.8) may be related to the usual one by means of 

d3P 1 [ M ] a 
2oJ~ = 2M 1 - ~'('v-v) dSv (7.9) 

The inverse of (7.2) is 

~c-~)r~R v) = _+ ((27r)l/sf<~)(M, v, s, A), ~b <~2)) (7.10) SA i . tv.t ,  

Using (7.2), (7.7), and (7.8), one obtains 

= Ms f 
d/z(v)[~b~-)'(M, v)~ ' ) (M,  v) 

- ~' ,;r(M, v)r  v)] (7.11) 

In contrast to (6.5), the sesquilinear form (7.7) [or (7.11)] is not positive 
definite; consequently, the positive and negative frequency wave functions 
enter the corresponding completeness condition with ( + )  and ( - )  signs, 
respectively. Thus the completeness condition corresponding to (7.8) is 

2 d/~(v)[(2~r)l/sfj<.m+)(x'; M, v, s, a)(2~r)l/sfj~)'(x; M, v, s, A) 

- (2rr)a/sfs<,m)(X' ; M, v, s, A)(2rr)l/sffjr(x; M, v, s, h)] 
= 3j,~3m,,,iA(x' - x; M 2) (7.12) 

where A is the usual causal propagator for a scalar field of mass M given by 

- i  ( dap A(x; M s) = (-~)3 j ~ [exp ( - i p . x )  - exp (ip.x)] (7.13) 

where oJp = (M s + pS)l/s and the four momentump is related to M a n d  v by 
(A.7). 
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Denote the values of the field (7.2) and its normal derivative for the par- 
ticular spacelike surface given by x ~ = 0 by 

r = ~ym~(x)lxo=0 

~']'(M2)(X) xO=o r = ~-,m , , (7.14) 8x o 

Then 

~b~'(x ~ x ) =  - f  d3x'[A(x~ x - x'; M 2 ) ~ " ( x  ') 

+ OA(x ~ x - x'; M S) ] 
- ~  ~ ( x ' )  (7.15) 

which satisfies (7.3) and the initial conditions (7.14). The sesquilinear form 
(7.7) may also be expressed in terms of the fields (7.14): 

(~M2~, ~,~,~ i ~  ~ ~ ~ .  ' ~ ,  = - ~bjm (X)r (X) ]  (7.16) d x [ ~  (x)r (x) "(~r (~,~ 
]m dx0=0 

The scalar product (6.5) may also be expressed in terms of the fields 
(7.14) by means of (6.12) and (7.10). The result is 

(+, = f f daxd3y ~ jm 

• ( ~ " ( x ) A ~ ( x  - y; M2)~Um~'(y) 

+ [ V ~ ) ( x ) ]  *. ~ ( x  - y; M 2 ) t V ~ ) ( y ) ]  

+ MZ~b~)'(x)A~(x - y; M2)r  (7.17) 

where 

A~(x - y; M z) = A~(x - y; M2)I,,o=~o (7.18) 

and 

__~1 [d3P 
Az(x; M 2) = (27r)a J 2e% [exp ( - ip .x )  + exp (ip.x)] (7.19) 

Functionals of ~b~m(X) and q'~m(X) may be expressed as functionals of  
q,~m~)(x), ~m~)(X) and ~b~r(x), ~-~r,'i'~r(X). . by means of (7.14)and (7.1). Then the 
appropriate functional derivatives are 

~ ) ( x )  = ~r = ~ , , ~ , ~ ( M ,  ~ _ M ~ ) ~ (  x, _ x) 
~y.P(x')  ~ ' ,~ ' (x ' )  
3~M~)(x) 3~2) ' (x)  (7.20) 
S~m~)(X,) = ~df~m%.(X,) = 3f,3m,m3(M '~ - MZ)3S(x ' - x) 
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while the other derivatives vanish. The variational derivatives for the mo- 
mentum space wave functions remain the same as those given in (6.16). 

Anti-Poisson brackets (+ )  and Poisson brackets ( - )  appropriate to the 
hypersurface description may be defined by 

+ a ~ ( x )  ~r 

8f ~g 
~r ~ (x~ ]  

3g 8f 
~r ~-~r(x) ]}  

(7.21) 

Note that each of the two terms separated by ( + ) i s  time independent. The 
brackets defined by (7.21) are quite distinct from those defined by (6.17). 

Using (7.1), (7.15), and (7.20), one finds that the basic fields satisfy 

f dM2 A(x' -- x; [~rm'(X'), r  = 8j,j~,m M S ) (7.22) 

where A is the causal propagator given by (7.13). Again, either type of bracket 
may be used for the basic fields, while the Poisson bracket ( - )  should be used 
whenever at least one of the two functionals f a n d  g is of even degree in the 
basic fields. There is no connection between spin and statistics inherent in 
the formalism. 

The brackets of the momentum fields may be computed using (7.10). 
Those which are nonzero are 

r (M, V)]pB+ i[r v'), r ~r 

= +3~,~3~,,aS(M'Z-M2)2M[1-~v'v)]aSa(v'-v) 

- ir.lx~)rM ' v'), ~b~)'(M, v)]pB- (7.23) - -  t ~ s ' h '  ~, , 

In terms of the momentum fields the brackets defined by (7.21) are given by 

i[y~,g]e~. = f d,(M, v) 

( [ S f  3g 
• 3~')(--M, v) r + )" a ~  (M, v) 

-]- ( + )  ( + ) ,  - ~G~ (M, v) 8G~ (M, v) 

~f ~g ] 
~ ;  ~M, v) J ~ ; ' ( M ,  v) 

~;'(M, v) 8~Z"(M, v) 
(7.24) 
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In terms of the basis given by (6.21), the sesquilinear form (7.11) may be 
written 

M 2 

- r v)r v)] (7.25) 

For each of  the operators Op e {X ~, P", L "v, juv, S,V} [see (6.23)-(6.26)], one 
may define a corresponding surface functional Op [a; ~b*, ~b] by 3 

Op [~; ~*, ~b] = f dM 2(~(M~), Op 

= ~m" f dtz(M' v)[~b~+"(M' v )Op vo',a"+'g ~r v) 

- ~b~r(M, v) Op ~b~)(M, v)] (7.26) 

For example, 

e.t ; ,/,*, ,/,l = f +(M,  v)g,W(M, v) 

+ ~b~m~'(M, v)f~7.)(M, v)] 

One can readily show that 

(7.27) 

[P"[~ ;r r 4,jm(x)lpB- = -a"q%(x) (7.28) 

for x e a, and 

[P"[-; 4", 4], P~[-; 4", 4,]lP,- = 0 (7.29) 

Again an entire set of  such relations exists which corresponds to the expres- 
sions (6.23)-(6.26) and to the commutation relations (5.7)-(5.9), (5.11), and 
(5.13). 

Using (7.10) and (6.21), the surface functionals (7.26) may be reexpressed 
in terms of  the functions (7.14) and their conjugates. If  this is done, the surface 
functionals (7.26) have the form of integrals of conserved flux densities over a 
spacelike hypersurface. For the energy-momentum and the orbital, spin, and 
total angular momenta, the forms of these conserved flux densities are well 

, A corresponding "matrix element" Op [or; ~b*, r may also be defined. 
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known. The position-time functional is given by 

x#f,,; r r 

= i j~.m f dlz(M, v) 

f .;.(+rrm [ O x \~'m ', , v) uU(v) ̀ gM 

[ + ff~m)'(M, v) uU(v) 0M 

~- A~(v)u."o(v) ~ ]  r v) 

1Aab(v)u,Ua(V) a ],/.(_ ) r  M ~j,,,, , , , ,  , v)} 
(7.30) 

The corresponding conserved flux density is 

/xUf,I,(.MZ)*(X~`gv,I,(M2)[X'~ ~v, l , (M2)* f . , - '~ , l , (M2)(y '~]  

,[a.(~2r( x ,9 ] + /-'L~PJm ,, ) ~ 9̀#̀gv'l'(M2)lX~etm k ] - -  ~v'l'(Mz)*y.,jm ~`9 `gu~b(tMm2)(X) 

n..u'V,lo(M2)* (.v.'~,l,(M2)[ w.'(l~ "[- 6 eJm t"~']WYm t-~Jf (7.31) 

and 

XU[a; r r = f,  dM~d'(x)x~'[x] 

= - i ~. f dM2dax 
jrn at 

I X  (M2) * "(M 2) "(M2)* (M 2) • [~Sm (X)r (X) -- ~jm (X)r (X)] 

[ `9 `9#r `9 O"r - r176 ~ - ~  + 2 r 

~#O,I,(M2)* f X~,I,(M2)[ ~'~'~ + s vs~ t Jvsm t~Jf  (7.32) 

Note that in (7.31), r is a function of the five variables M 2 and x u, so 
that the derivatives 8/`9M 2 and `9" commute. If  this point is kept in mind, it is 
straightforward to verify 

8,X#~[x] = 0 (7.33) 

In (7.32), x ~ = t is held constant, so that it is only possible to partially 
integrate with respect to the variables M ~' and x. It is necessary to employ 
the relation 

~j~2~(x) = - ( -  V 2 + M2)~b}~'(x) (7.34) 
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in the demonstration that (7.32) is a real functional. The integrated terms 
may be neglected (see Appendix B). 

The above analysis has dealt with the case of fields $~2)(x) which depend 
continuously on the variable M 2. Corresponding formulas for the case of a 
single discrete mass may be obtained provided the normalization is suitably 
adjusted. The modifications required for the energy-momentum and the 
orbital, spin and total angular momentum functionals are minor. For the 
position-time functional, instead of (7.30), one must use, 

M2f 
x.[~; ~*, 4,] = - i ~ - ~ -  dr(v) 

j m  

1[  Aab(v)u-~(v) ~ ] ) + ~.;~'(M, v) ~r ' b-~ + ~ u~(v) ~F(~r, v) 
(7.35) 

where the normalization of $ ~ ( M ,  v) is given by 

g at(v) ~ [~}F'(M, v)O}~*~(m, v) + ~};?'(m, v)~};?(m, v)] = 1 
j m  

(7.36) 

instead of by (6.12). In this connection, it is interesting to note that the 
eigendifferentials 

I f M2 + lt2AM2 
~b~='aM2)(x) = (AM2)~I21 dM2~b~(x) (7.37) 

�9 d M 2 - -  3 . / 2 A M  2 

have the customary dimension of length [L-q .  
Much of the analysis of Sections (6) and (7) can be carried over to the 

case of a single spin s. It is a straightforward matter to write down functionals 
corresponding to (6.27) and (7.26) using the basis .t,(*)rM v-~,a ~ , v) for fixed s. The 
bracket operations (6.20) and (7.24) are easily restricted to the case of fixed s. 
Of course, the operator X", L "~, and S "~ and the corresponding functionals 
will suffer the limitations discussed at the end of Section 5. The momentum 
space expressions may be reexpressed in terms of  the fields ~b~(x) and 
~b~'~>(x) defined by dropping the sum over s in (6.8) and (7.2), respectively. 
The bracket (7,22) is replaced by 

(,o) = ( dM2 Pr ("~ A(x -- x; M 2) (7.38) [~,~'~,(x'), ~ ' ( x ) ] ~  J 2~ 

The projection operator Pr m (ia/M) defined in Appendix F is an infinite 
power series in the derivative a ~. Whether this fact leads to nonlocal behavior 
is an open question. 
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8. INADEQUACY OF THE CUSTOMARY FORMALISM 

There are two wave-function formalisms which are naturally adapted to 
the description of  events in Minkowski space-time. These were described 
above in Sections 6 and 7, respectively. The formalism usually employed in 
relativistic quantum kinematics corresponds to neither of these but rather 
contains elements of  both. In this section it will be shown that although it is, 
in fact, necessary to use aspects of both formalisms, they are incompatible 
except for the trivial case of  free one-particle states. Then the ad hoc "cut and 
paste" measures required to construct the traditional structure as a blend of  
the two natural formalisms will be discussed. 

Throughout the following discussion it is important for the reader to 
keep firmly in mind the systematic differences in the corresponding formulas 
of  the two formalisms. In this connection, it should be emphasized that the 
space-time density description of  Section 6 and the hypersurface flux density 
description of  Section 7 are quite distinct, and the systematic differences in 
corresponding formulas should be kept firmly in mind. In this connection 
it is useful to compare the sesquilinear forms (6.5), (6.12) and (7.7), (7.11), 
the orthonormality relations (6.10) and (7.8), the completeness conditions 
(6.13) and (7.12), the brackets (6.17), (6.20) and (7.21), (7.24), and the opera- 
tor functionals (6.27) and (7.26). In particular, note that P"[~*, ~b], given by 
(6.28), is not positive definite, while P"[~r; ~b*, ~b], given by (7.27), is positive 
definite. Also, the number functional 

N[$*, ~b] = s~ ~ f dlx(M, v w't'(+''tM,twsa , , v''(+)/M,~'~a t , v) + $(s~)*(M, v)~(s~)(M, v)] 

(8.1) 
is positive definite, while the charge functional 

Q[a; ~*, ~h] = ~ f dl~(i, v)[~b(~"(/, v)~b(~-)(M, v) - ~(~[)'(M, v)~b(~)(/, v)] 

(8 2)  

is not positive definite. 
Of the two formalisms, only the space-time density formalism has a 

positive-definite inner product, namely, (8.1). Since a positive-definite form 
is required for the usual interpretation of quantum mechanics, one must use 
the space-time density formalism. It is interesting to note that an entirely 
similar formalism may be constructed for any Euclidean or pseudo-Euclidean 
space. In the case of a pseudo-Euclidean space, provided that all momentum 
star classes are treated symmetrically, no connection between spin and statistics 
results. In the Euclidean case, this lack of  spin-statistics connection follows 
automatically from the fact that there is only one momentum star class (other 
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than p = o). Moreover, if all star classes are included in the completeness 
relation one obtains an n-dimensional Dirac 3 function where n is the total 
dimension of the space. If  only some of the star classes are included, one 
obtains approximations to this Dirac 3 function; for example, the even 
function Al(x -- y;  M 2) approximates 3~(x - y) for wave functions which 
have momentum support on the forward or backward mass shell in the case 
of Minkowski space-time. The energy functional for this formalism is not in 
general positive definite. 

On the other hand, the flux density formalism has a positive-definite 
energy functional but does not have a positive-definite inner product. Rather 
the best one can do is the indefinite form given by (8.2). The completeness 
relation for this form has a minus sign associated with the negative frequency 
states, and it is this sign which leads to the causal functions A(x - y;  M2). 
Again, the decoupling of spin and statistics follows from the symmetric 
treatment of positive and negative frequency states. It is the flux density 
formalism with its conserved flux densities and causal propagators that is 
required by Lagrangian dynamics. 

Thus for relativistic quantum mechanics both the space-time density 
and the flux density formalisms must be used. But these are incompatible 
except for the case of free, single-particle states. Compare the momentum 
space expressions for the respective bracket forms (6.20) and (7.24). It is clear 
that one may employ the Fock space construction either for (6.20) or for 
(7.24) but not for both simultaneously; therefore, one is restricted to single 
particle states. Moreover, if the inner product (6.5) of the flux density formal- 
ism is projected onto a spacelike hypersurface, one obtains the result (7.17). 
By definition, this inner product is time independent for the case of free 
propagation. However, it is easy to show by considering the interaction 
Lagrangian for the simple case of a complex scalar field ~(x) 

s = g(q~*(x)~(x)) n (8.3) 

that the inner product (7.17) is not invariant for a general Hamiltonian flow. 
Note that the nonlocality in the expression (7.17) follows from the fact that a 
quantity which has a local expression in space-time is projected onto a 
three-dimensional subspace. 

The conclusion to be drawn from the above discussion is that quantum 
mechanics and Lagrangian dynamics are incompatible in the context of 
special relativity. 

In order to secure this conclusion, it is necessary to show that the formal- 
ism traditionally used in relativistic quantum mechanics is not a viable 
alternative but rather consists of an irrational blend of the space-time 
density formalism and the flux density formalism. 

Recall that the space-time density formalism has a positive-definite 
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sesquilinear form but an indefinite energy functional and that the situation 
is reversed for the flux density formalism. For a classical field, the flux density 
formalism is adequate because the positive-definite inner product is not 
required, and the positive and negative frequency parts of the field can be 
treated symmetrically without any difficulty. However, for relativistic 
quantum mechanics, both the sesquilinear form and the energy functional 
must be positive definite. This demand leads to the first ad hoc step, namely, 
the reinterpretation of the negative frequency part of the wave function. The 
conjugate of the negative frequency part of the wave function is associated 
with a particle state; consequently, the expansion 

+ f]m-'(X; M, v, s, a)44;r(m, v)] 
where 

(8.4) 

(8.5) f,'z'(x; M, v, ~, a) = ~ j%-~(x; M, v, s, a')V&' 
A" 

is used in place of (6.8). The wave function ~ ) ( M ,  v) transforms in the same 
way as 4,~)(M, v) under an element of the Poincar~ group, and U (s) is the 
standard unitary matrix (Fano and Racah, 1959) which transforms the 
representation D (s) of 0(3) into the conjugate representation D (st. Since U (~) 
is unitary, a sesquilinear functional of the field (8.4) can be obtained from the 
corresponding sesquilinear functional of the field (6.8) by means of the 
substitution 

~b~;)(M, v) ---> ~ ) ' ( M ,  v) 
(8.6) 

~b~;)'(M, v) --> ~;)(M, v) 

For example, the nondiagonal versions of (8.1) and (8.2) become 

NEd,*, r = ~ f dlz(M, v)[,tb~t'*(M, v)r v) + ~Z'(M, v)r v)] 
sA , . I  

(8.7) 
and 

= f v)[~bsa (M, v)~-)(M, Q[a, 5b*, 41 ~ dl~(M, '+)" v) - ~Z~(M, v)~[Z)'(M, v)] 
8 A  i t  

(8.8) 

It is evident that the conjugation operator * is applied to 6~-~ rather than 
~-~ in (8.7) and (8.8) and that the same will be the case for every sesquilinear 
functional discussed in Sections 6 and 7. This is the first inconvenient result 
of applying the apparently harmless reinterpretation principle. This difficulty 
appears less serious for the case of diagonal functionals for which ~b = 
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because the defect can be remedied by a simple reordering of  the wave func- 
tions. The situation is similar when field operators are used. This ad hoc 
procedure of changing the order by hand is usually called normal ordering�9 

The substitution (8�9 has a striking effect on the brackets defined by 
(6.17) and (7.21). Consideration of the momentum space expansions (6.20) 
and (7.24) shows that (in the boson case) the brackets are interchanged under 
this substitution after a suitable reordering of terms. Thus 

{f, g}_ ,-~ i~ ,  g]vs-  (8.9) 

Instead of (7.23), one obtains 
�9 ~ ( _ )  , , 
t [~b~,a,(M , v ), r  v)]v~- 

= 8s,,Sa,xS(M '2 - M2)2M[ ,1 - ~�88 o tv' - v) 

= i[~]7~!(M', v'), ~ ; r ( M ,  V)]VB- (8.10) 

and the usual Fock construction may be used for multiparticle states in the 
flux density formalism. 

The normal ordered form of (8.7) is 

N[r r = ~ f d~(M, v)[~b~st'*(M, v)r v) 

+ ~ ' " ( M ,  v )~ ; ' (M,  v) 1 (8.11) 

This expression is used as the inner product in the conventional formalism. 
In the case of  discrete mass, the integration over the mass is of course sup- 
pressed. If  this expression is projected onto a spacelike hypersurface using 
(8.4), one obtains the rather complicated formula 

(r r 1 8 9  f dM2f d3xd3y ~ {[r Y; M2)r 

+ (Vx~b~2~(x)) *" Az(x - y; M2)(V~r 
+ M2~b~2r(x)A~(x - y; M2)r 

+ [complex conjugate]} 

:zj  j j {[r (x) 

( M 2 )  * "(M2) - ej,~ (x)r (x)] 
+ [complex conjugate]} (8.12) 

where A~(x - y; M 2) is given by (7.18). 
The expression (8.12) should be compared and contrasted to (7.17). The 

nonlocal character of the real part of (8.12) again follows from the fact that 
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the inner product belongs to the four-dimensional space-time formalism and 
is projected onto a three-dimensional spacelike hypersurface. In contrast with 
(7.17), the imaginary part of (8.12) is local and defines a real, nondegenerate 
symplectic form for the wave functions [~2~(x), 4,(SmM2~(X)]. This symplectic 
form and the modified bracket relations (8.10) indicate that the reinterpreta- 
tion and normal ordering principles succeed in adapting the inner product 
structure of the space-time density formalism to the Lagrangian structure of 
the flux density formalism (Bongaarts, 1972). However, in addition to the 
fact that these two principles are rather arbitrary, not everything works out so 
nicely. 

In the space-time density and flux density formalism, one readily obtains 
the respective bracket relations 

{XU(4,., ~), pv(4,., 4,)}_ = ig~VN(4,., 4') (8.13) 
and 

[Xu(cr; 4,*, 4,), PV(cr; 4,*, ~b)]pB_ = gU~Q(~r; 4,*, 4,). (8.14) 

These bracket relations are sensible because N(4,*, ~b) and Q(~; 4,*, 4,) given 
by (8.1) and (8.2) are just the respective unit functionals in the two formalisms. 
However, after the principles of reinterpretation and normal ordering have 
been applied to the flux density formalism, one finds that the relation (8.14) 
still holds. Unfortunately, Q(~; 4,*, 4,) is no longer the unit functional for the 
resulting formalism. This role is now played by N(4,*, 4,). Consequently, in 
the conventional formalism, the position-time functionals do not transform 
properly under translations. This failure is now perfectly understandable and 
is an indication that the application of the principles of reinterpretation and 
normal ordering is not a consistent procedure. 

Since the conventional formalism does not treat the positive and negative 
frequency parts of the wave function in a symmetric way, the choice of 
statistics is no longer arbitrary. For wave functions which transform accord- 
ing to a unitary representation of 0(1, 3), one must choose Bose-Einstein 
statistics. By using finite-dimensional representations of 0(1, 3), one obtains 
an additional sign (_)2s, where s is the particle's spin, between the positive 
and negative frequency contributions to the bracket relation for the wave 
function; consequently, one can obtain causal bracket relations provided the 
customary relation between spin and statistics is adopted. This switch to 
finite-dimensional representations leads to further difficulties with position- 
time operators since only truncated versions of such operators can be 
defined unless unitary representations of 0(1, 3) are used (see the comments 
at the end of Section 5). 

The irreducible, finite-dimensional representations of 0(1, 3) are given by 
(Naimark, 1964) 

D <'4,B~ = D <A'~ | D c~ (8.15) 
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where D (a'~ and D (~ are complex extensions of the UIR of 0(3) and 
A, B e {0, �89 1, ~, 2 . . . .  }. The quantum numbers A and B are usually sup- 
pressed by assigning them more or less arbitrary values possibly chosen for 
simplicity. These additional, unwanted quantum numbers result from the 
fact that the formalism is adapted to the description of a system with three 
degrees of freedom in excess of those possessed by a classical particle. This 
point is discussed further in Section 10. The same difficulty arises in connec- 
tion with wave functions which transform according to a UIR of 0(1, 3), in 
which case the additional quantum numbers are (p, ko). In this particular, 
none of the three formalisms is adequate. 

The use of finite-dimensional spinor wave functions involves additional 
difficulties. For example, the inner product for the four-component spinor 
wave function ~b(p) which transforms according to D (1/2'~ �9 D (~ is given 
by 

( dSp o . 
= ~ ~(p) (8.16) (r ~) J ~ r 

The presence of the Hermitian Hilbert space metric matrix (yOy.p)/M is due 
to the fact that the spin projection operator is not diagonal in the chosen 
basis. The fact that this matrix depends on pa is inconvenient from the 
viewpoint of constructing a Lagrangian; consequently, it is customary to 
discard half the degrees of freedom by projecting onto a subspace for which 

7_~ ~b(p) = r (8.17) 

This relation is just the Dirac equation. For particles with higher spin s, 
the metric matrix will be at least of degree 2s in p~ and the manipulations 
required to remove the momentum dependence of the metric matrix are 
considerably more complicated. 

Another point of interest is the fact that in the space-time density and 
the flux density formalisms, both the completeness condition and the bracket 
relation for the basic fields yield the unit distribution for the system in ques- 
tion. Compare (6.13) with (6.18) and (7.12) with (7.22). However, in the 
conventional formalism no such relationship holds. This peculiarity of the 
conventional formalism bears a strong resemblance to the difficulty that arises 
in connection with the position-time functional where the problem is the unit 
functional. [See the comments made above in connection with (8.13) and 
(8.14).] 

In conclusion, the customary kinematic formalism used as a foundation 
for relativistic quantum mechanics and relativistic quantum field theory 
contains a number of anomalies which can be readily understood provided 
that this formalism is viewed as an ad hoc blend of the space-time density 
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and the flux density formalisms described in Sections 6 and 7. Although each 
of these formalisms is self-consistent, they are incompatible except for the 
trivial case of free single-particle states. The ad hoc adaptations required to 
construct a workable formalism are only partially successful, and the resulting 
customary formalism is internally inconsistent. 

It should be emphasized that the difficulties discussed above do not 
apply in the case of classical fields. First, in the classical case, a positive- 
definite inner product is not required and one can simply use the flux density 
formalism outlined in Section 7. Second, the tensor indices on classical fields 
have a different meaning from that required by the particle interpretation 
associated with the quantum case. 

9. POSITION OPERATORS FOR THE EUCLIDEAN CASE 

The definition and construction of position operators in nonrelativistic 
SchrSdinger mechanics is well known. However, it is not customary to take 
as the starting point of the discussion the unitary irreducible representations 
(UIRs) of the Euclidean group E(3). In the preceding sections, the construc- 
tion of position-time operators starts with the UIRs of the Poincar6 group 
E(1, 3); therefore, it is useful to review here the parallel construction for the 
Euclidean case. Since the formulas for the Minkowski case are justified in 
detail above, only an outline of the Euclidean case is presented here. It should 
be emphasized that, although formulas are given only for the group E(3), the 
construction may be carried through for the Euclidean group in n dimensions, 
E(n). 

Denote by x~(P) the coordinates of a point P in Euclidean space. Under 
an element (a, R(~o)) ~ E(3), the coordinates transform according to 

x' = a + Rx  (9.1) 

The rotation matrix is given by 

R(oJ) = exp ~ oJ~sI~ J (9.2) 

where 
(I,j)~z = - i (8 ,~8J , -  8,,Ssu) (9.3) 

A UIR of E(3) has Hermitian generators P~ and J~j for translations and 
rotations, respectively. For a complete set of commuting observables, one 
may choose the three-momentum and helicity operators, namely, 

P, �89 jPk (9.4) 

which have eigenvalues p~ and IplA, where A denotes helicity. The momentum 
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space wave function for a particle with helicity h is a complex-valued function 
ffa(p) square integrable with respect to the inner product 

(4J, ~) = f dap~ba(p)ff~(p) (9.5) 

Under a rotation, the wave functions transform according to 

[U(R)~b]a(p) = exp {iAo[g- I(p)RR(R- lp)]}~b~(R- ~p) (9.6) 

where R(O) is the rotation in the plane of/~ = (0, 0, [p]) and p which takes/~ 
into p. 

Wave functions which transform according to (9.6) are intrinsic tensors 
on the momentum sphere. Introduce the coordinates (p, ~ ,  ~9,) by 

then 

P [~:1, ~:z, 1 - �88 = pu,(~) 
P ' =  1 +�88 (9.7) 

dp ,=  u,(r dp + pu,.o(r dr ~ 

dp.dp =(dp)  2 + 1 + 4Z(~.~:) d~.d~ (9.8) 

eu,(~) 
u,,~(~) = e ~  

Under a rotation R, an intrinsic vector field ~b defined on the sphere trans- 
forms according to 

[U(R)~b]~(p, ~) = a(R- ~)~ ~ ,  ~ ( p ,  R - I O  (9.9) 

The transformation law (9.9) is the same as that given by (9.6) for h = + 1. 
The difference lies in the fact that the tensor indices in (9.9) refer to the 
coordinate basis u~,~(~), while the helicity h = + 1 in (8.6) refers to the basis 

n,l(~) _+ n,~(~) 
21/2 

where 
n,~(~)--- [1 + �88162162 

n,(~), nB(~) = 8,B (9.10) 

Using this correspondence parallel transport can be defined for the field 
~b~(p, ~:) in a manner analogous to that used in the Minkowski case (see 
Section 4). 



118 Coleman 

For a scalar wave function ~b(p, ~), the usual definition of  the position 
operator X~ is 

X~ = i a-~- [ O1A'~B(')u'.~'(') O ] ep, = i u,(~:) ~ + ~ ~ (9.11) 

where A"~(r = [1 + �88 r is the metric tensor on the sphere. In the 
case of  nonzero helicity, the expression (9.11) must be modified by replacing 
the partial derivative a / ~  a by the covariant derivative 8/8~ a, so that 

[ ~3 1 A~(~:)u,,=(,) ~ ]  (9.12) x ,  = i + 

Compare (9.12) with (2.7). The operators defined by (9.12) satisfy 

[X~, Ps] = iS,j (9.13) 

However, 

[X~, Xj] ~ 0 (9.14) 

because the covariant derivatives do not commute. If  L~ s is defined by 

L~j = X~Pj- XjP~ (9.15) 

then 

Jtj = L~j + S~s (9.16) 

However, L~j and S~j do not satisfy the same commutation relations as J~s and 
do not mutually commute. 

The standard solution of  these difficulties is to use wave functions which 
transform under rotations according to a UIR  of 0(3), the Casimir operator 
of  which then represents the particle's total spin angular momentum. Except 
for the scalar case, the wave function must then describe more than a single 
helicity state; for example, )t = 0, + 1 for the case of  spin 1. In a Cartesian 
basis the position operator is just the partial derivative (9.11). One obtains 
the relation (9.16) where the operators L~j are again defined by (9.15) and the 
operators S~y are just the generators of  the UIR of 0(3). These operators, L~j 
and S~j, are Hermitian, mutually commute, and satisfy the same commutation 
relations as J~j. Since 

[X~, �89 = [X~, �89 ~ 0 (9.17) 

the position operator has nonzero matrix elements between states of  different 
helicity. A similar comment applies to the operators L~j and S~j. If  these 
operators are restricted to a space of definite ]A] by transforming from a 
Cartesian basis to a spherical basis and discarding the unwanted terms, the 
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operators are truncated, and it is this truncation which leads to the unaccept- 
able commutation relations for the position operator (9.12) and for the corre- 
sponding truncated versions of the operators L~j and S~j, namely, 

3 
L , j  = iA'~(r ) - u~(~:)u,,~(~:)] ~-~ (9,18) 

and 

(S~s)~B = i[u~,~(~)uj,B(~) -- uj,~(~)u~,a(0] (9.19) 

An important difference between the Euclidean and the Minkowski 
cases is the fact that all of  the UIR's of 0(1, 3) are infinite dimensional so that 
wave functions which represent an infinite spin tower must be used. 

10. CLASSICAL PARTICLE WITH SPIN 

The source of the difficulties described in the preceding sections may be 
traced to the fact that the mathematical formalism of relativistic quantum 
kinematics is not appropriately adapted to the description of certain aspects 
of  the concept of  a point particle with spin. In order to emphasize those 
features which are not appropriately described, the classical description of 
the motion of  such particles will be briefly reviewed using the formalism of 
mass shell tensors. 

The history of  a moving point particle is represented in Minkowski 
space-time by the world line of the particle, a curve z"(J-), where J -  denotes 
the proper time of the particle. Using the velocity coordinates defined by 
(A.22), one obtains for the unit timelike velocity four vector 

dz" 
~-~ = u.(v(:r)) (10.1) 

Since the force four-vector F ~ is always orthogonal to the velocity four- 
vector, def inef  a by 

F ~ = fau%(v(.~7")) (10.2) 

Then, if M denotes the rest mass of the particle, the equation of  motion is 

M dva = f a  (10.3) 

For  a particle with charge e in an electromagnetic field F ~' where 

F u, = _ [uU(v)u~(v) - u,(v)u,U~(v)]g ~ 

- �89 - u,~a(v)u,%(v)]~ '~b (10.4) 
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the mass shell force vector f~  is given by 

f~  = es ~ (10.5) 

A completely adequate model for intrinsic spin does not yet exist; 
however, it is customary to represent the intrinsic angular momentum of a 
point particle by a Lorentz four-pseudovector S" which is orthogonal to the 
four velocity at every point of the particle's world line. Even if there is no 
applied torque, the spin pseudovector S ~ must nevertheless change with time 
in order to remain orthogonal to the four velocity. I f  it is also required that 
g~,~S~'S ~ remain constant along the world line, the spin pseudovector must 
satisfy the equation for Fermi-Walker transport (Misner et al., 1973) 

where 

a s  k 
+ g ~ , ( # ' a  ~' - u V # ' ) S  ~ = 0 (10.6) 

d 2 z  ~' d # '  d v  '~ 
a ~ -- d3- 2 = ~ = u.~(v) (10.7) 

' dJ" 

D e f i n e  the mass shell spin pseudovector ~ by 

S u = ~9~ (10.8) 

Then, it is straightforward to show that 6a~ satisfies the equation for parallel 
transport relative to the intrinsic geometry of the mass shell, namely, 

d:O : a \ : b d :  
+ I b cJ  d f  = 0 (10.9) 

The expression for Thomas precession (see Misner et al., 1973, p. 175, for an 
alternate treatment) may be derived in a particularly elegant manner from 
equation (10.9). This computation is presented in Appendix H. 

Higher-order structure of a particle may similarly be described by mass 
shell tensors; for example, a quadrupole moment is represented by a mass 
shell tensor ~a0 which is symmetric and traceless: 

~ab = ~b~ (10 .10)  

A~o(v)-~ ~ = 0 
and satisfies 

dg- + c ~ + ~.c d )  d~q'= 0 

in the absence of coupling to external fields. 

(10.11) 
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For a particle with a gyromagnetic ratio P, equation (10.9) must be 
replaced by 

d5 aa f a \seb dve 
+ (b  cJ d ~  = VA"b(v)%caSa~gila (10.12) 

where 

~3 ab = Aca(v)c~bcg~ a (10.13) 

Finally, it is interesting to note that the Abraham four vector I'u is given 
by (Rohrlich, 1965) 

2 2[da" ) 
P" = -~ e ~ + aaaau ~ 

2 Jdav~  { }dvbdvC'~ . , .  
(10.14) 

The usual heuristic model of an extended particle is a tube of world 
lines which is everywhere timelike and which has a small three-dimensional 
cross-section at every point along its length. (For a covariant description of 
such a tube, see Sorg, 1974; Synge, 1974.) Such a tube is most aptly charac- 
terized by describing its cross-section at each point along its length. The 
structural features of each cross-section may be specified by means of tensors 
belonging to the three space of the cross-section; consequently, in the limit 
of a point particle, structural features are described by mass shell tensors 
which vary with the particle's proper time. 

It is clear that the spin of a particle and all of its multipole moments are 
well defined only if the four momentum of the particle is precisely known. 
In classical physics, this fact does not cause any difficulty since position and 
momentum may be simultaneously determined with arbitrary precision. 
However, in quantum mechanics, to the extent that the particle's position is 
defined, its momentum is not defined, and its spin and multipole moments are 
not defined either. This fact is the basic source of the difficulties described in 
the preceding sections. 

In principle, the Feynman path integral formalism (Feynman and Hibbs, 
1965) for quantum mechanics offers a way out of this difficulty because 
probability amplitudes are assigned to entire world lines. However, as soon 
as an attempt is made to define the customary wave function for a particle at a 
point at a given time, the difficulties with spin described above return. This 
wave function is defined to be the sum of the probability amplitudes for all 
the world lines which lead to the space-time point from the past. Clearly, at 
the space-time point, the various world lines will have different four mo- 
menta, so that, unless one is willing to merely average over the spin variables 
before summing over the world lines, one has difficulty in representing the 
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spin information. Nevertheless, the difficulties with spin are not built into 
the foundations of the Feynman path integral formalism, and although the 
formalism is plagued with other problems, research on this formalism may 
provide a solution to the problems with spin described in this paper. 

There are two essentially different geometries possible for a particle in 
Minkowski space-time which will be called the sphere geometry and the tube 
geometry. In both cases, the particle's path in space-time is specified by an 
everywhere timelike world line. In the sphere geometry, the orientation at 
each point of the world line is specified by assigning an arbitrary tetrad 
subject only to the condition that the tetrad vary continuously along the 
world line. In the tube geometry, discussed above in this section, the tetrad 
at each point of the world line is further restricted by the requirement that the 
timelike member of the tetrad be tangent to the world line at the given point. 
In the case of Euclidean three space, the same two alternatives are available. 
Given a twisted space curve, in the sphere geometry, one may specify an 
arbitrary triad at each point on it, while for the tube geometry one of the 
triad's vectors must always be tangent to the space curve at the given point. 
Now in Section 9, it was shown that satisfactory position operators for the 
Euclidean case cannot be defined for wave functions which transform accord- 
ing to a U1R of E(3). It is necessary to use wave functions whose spin indices 
transform according to a UIR of 0(3) rather than according to a UIR of the 
little group which is 0(2). The wave functions are then described by an 
additional quantum number, the total intrinsic angular momentum, the 
presence of which indicates that the wave functions describe three-dimensional 
objects moving in three-dimensional space. Similarly, in Section 5, it was 
shown that fully adequate space-time operators for the Minkowski case can 
be constructed only if wave functions with spin indices which transform 
according to a UIR of 0(1, 3) are used. In both cases, one is dealing with the 
sphere geometry rather than the tube geometry. In nonrelativistic physics 
time is separate from three space and one is describing three-dimensional 
objects in three space, so that, the sphere geometry is the appropriate one. 
However, in relativistic physics, space and time are unified and it is necessary 
to deal with the tube geometry rather than the sphere geometry; conse- 
quently, wave functions which transform according to a representation of 
0(1, 3), whether finite or infinite dimensional, are not appropriate. Moreover, 
it is not at all clear that an appropriate quantum description of tube geometry 
even exists. In the classical case the problem is readily solved by means of mass 
shell tensors. 

The important point to be emphasized here is that simple generalizations 
of  the formalism used in the nonrelativistic case, such as replacement of three 
tensors by four tensors, are not always appropriate. While it is possible to 
regard density and flux as components of a four vector or energy and three 
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momentum as components of four momentum, quantities such as intrinsic 
spin and multipole moments must be treated quite differently. 

11. CONCLUSIONS AND COMMENTS 

The kinematic formalism currently used as the foundation for relativistic 
quantum mechanics and relativistic quantum field theory is not internally 
consistent and is not appropriate for the description of particles possessing 
internal structure such as spin and multipole moments. Three main arguments 
were advanced in support of this conclusion. 

First, as discussed in Section 10, the description of particle structure is 
rather more complicated in the Minkowski case than in the Euclidean case. 
In the nonrelativistic case, time and space are separate, and unconstrained 
Euclidean tensors may be used to describe particle structure. In the relativistic 
case, however, the structural features of a particle must be described in the 
rest system of the particle, and the Minkowski tensors used for the description 
are constrained to have nonzero projections only on the three-dimensional 
subspace orthogonal to the particle's four momentum. Thus, in the relativistic 
quantum case, any uncertainty in the direction of the four momentum 
automatically results in an uncertainty in any quantity describing the particle's 
structure. The use of wave functions which transform according to repre- 
sentations of 0(!, 3) allows for unneeded degrees of freedom. The additional 
quantum numbers, the eigenvalues of the Casimir operators of 0(1, 3), must 
then be arbitrarily specified, and even then additional constraint equations 
are required. 

Even if these objections are brushed aside and wave functions which 
transform according to representations of 0(1, 3) are allowed, there are 
strong reasons for preferring the infinite-dimensional UIR of 0(1, 3) to the 
finite-dimensional, nonunitary spinor representations of 0(1, 3) that are used 
in the customary formalism. Briefly, there is a completely general construction 
for position or position-time operators for any Euclidean or pseudo-Euclidean 
space regardless of signature or dimension (see Sections 2-5 and 9). This 
construction is based on the covariant momentum derivatives of the momen- 
tum space wave functions with respect to the intrinsic geometries of the 
various momentum space "mass shells" involved. In the Minkowski case, 
the use of this construction leads to the requirement that wave functions 
transforming according to a UIR of 0(l, 3) be used; consequently, spinor 
fields must be rejected. Since this construction is accepted as standard in the 
Euclidean case and since it is quite generally applicable, its rejection in the 
particular case of Minkowski space-time must be regarded as ad hoc. 
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The third argument showed that the numerous peculiarities of the 
customary kinematic formalism can be understood provided that this formal- 
ism is regarded as an ad hoc blend of two other formalisms, the space-time 
density formalism and the flux density formalism. The latter two formalisms 
were discussed in Sections 6 and 7, respectively, while the analysis and criti- 
cism of the customary formalism was presented in Section 8. The arguments 
of Section 8 can only be understood if the analogous formulas of Sections 6 
and 7 are thoroughly compared and contrasted with each other and with the 
corresponding formulas of the customary formalism which may be found in 
any standard text on relativistic quantum mechanics or relativistic quantum 
field theory. Although the space-time density and the flux density formalisms 
are themselves internally consistent, their mixture, the customary formalism, 
is not. 

Quantum electrodynamics has successfully passed every experimental 
test so far devised. Yet the theory is logically flawed. An ingenious recipe has 
been found for obtaining correct answers from an incorrect theory. At 
present, it appears likely that experiment will not be able to provide clues to 
guide research on this difficult but fundamental problem. The relevance of 
the analysis presented above is that it does point to several specific features of 
the theory that require radical revison. It should be stressed that the well- 
known ditficulties of relativistic quantum field theory result not merely from 
the use of inadequate computation methods such as perturbation theory, nor 
even from the failure to find the precise interaction for which the singularities 
will cancel. Rather, their origin lies much deeper in the structure of relativistic 
quantum kinematics itself. It is possible that somewhat different formulations 
of relativistic quantum mechanics, such as the Feynman path integral formal- 
ism briefly discussed in Section 10, will provide a solution to some of the 
difficulties discussed above; however, it is important to ensure that these 
difficulties do not merely reappear in a disguised form. On the other hand, 
the difficulty of constructing a consistent relativistic quantum mechanics 
appears sufficiently great to justify attempts to find a classical explanation for 
quantum phenomena in the form of nonlocal hidden-variable theories. 

APPENDIX A: THE INTRINSIC GEOMETRIES OF 
THE INTERIOR OF THE FORWARD LIGHT CONE 

AND OF THE MASS HYPERBOLOID 

In this appendix the notational conventions are fixed and a number of 
geometric formulas used in the main text are presented. (See any standard 
text on differential geometry. An elementary treatment is given in McConnell, 
1957.) 
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Let X denote a point in space-time and denote by 

x" = (x ~ x 1, x 2, x 3) = (t, x0 = (t, x) (A.1) 

the coordinates of X in a given frame. The Minkowski metric is given by 

[g"q = [g,~] = diag (1, - 1, - 1, - 1) (A.2) 

The space-time interval is 

( d X )  2 = g ~  dx"  dx"  = ( d t )  2 - d x . d x  (A.3) 

and the measure on space-time is 

dlx(x)  = d ~ x  = d x  ~ d x  I d x  2 d x  a = d t  dax (A.4) 

{x, 2t,/,, v . . . .  } are used for space-time indices, while {i, j, k, l . . . .  } are used 
for space indices. 

Let P denote a point in the momentum-energy manifold, the interior of  
the forward light cone in momentum space. Such a point corresponds to a 
Minkowski four-vector f which satisfies 

g~,~p~p~ > 0 (A.5) 

However, it is more convenient to use the orthogonal, curvilinear coordinates 

v ~ = (v ~ v 1, v 2, v a) = ( M ,  v a) = ( M ,  v) (h.6) 

defined by 

where 

1 - � 8 8  1 + , v  (A.7) 

p0 > 0 M > 0 Ivl < 2 (A.8) 

{~,/3, ~,, 8 , . . . }  are used for velocity-mass indices, while {a, b, c, d , . . . }  are 
used for velocity indices. 

It is interesting to note that in the nonrelativistic approximation Iv I << 2, 

p~ -" [M + �89 My] (A.9) 

The differential element in momentum-energy space is given by 

dp ~ = p.% dv '~ p~., = ~P~' (A.10) 
Ov cc 
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where 

p ,%= 

p 5  = 

p . ~ =  

p,ua= 

Define ~7,~B by 

and ~,~B by 

1 - �88  

- r +  - 

[ 1 - � 88  2 v2, 2 "  2 + 1 -  , 

[ I 4)] [1 �88 2 va' ~ '  2 ' 2 -  + 1 -  

~ v  

~aZ~B v = 8v ~ 

then 

"1 Y,o:U,.~ 

Explicitly, ~/@B and ~@' are given by 

(v~ ~ (v~ 2 
[%~] = diag 1, [1 - �88 2' [1 - �88 v 

d i a g f l  ' [1 - �88 2 [1 - �88 2 
In ~1 (vO)~ , (vO)2 , 

The momentum-energy interval is 

( d P )  2 = % e  dv~ dv~ = ( d M )  2 - 1 - -~-(v-v) dr.  dv 

The measure on the momentum-energy manifold is 

M z 
d/z(P) = [ 1 - k ( v . v ) ]  d M d 3 v  

Define 

then 

n = d e t  [V~a] 

d r ( e )  = ( - n )  1~ d~v 

(A.11) 

(A. 12) 

(A. 13) 

(A. 14) 

I1 - �88  

(A.15) 

[1 -- �88 v)]2"[. 
(v~ ~ ) 

(A.16) 

(A.17) 

(A. ~ S) 

(A .  19) 
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The momentum-energy gradient is given by 

Op--~ = ~r ~ (A.20) 

Only invariance under the Lorentz group rather than invarianee under 
the larger group (semigroup) which leaves the form (A.16) invariant is 
required. Each of the mass hyperboloids, which are all similar, is invariant 
under Lorentz transformations. Some useful results relating to the intrinsic 
geometry of the forward unit mass hyperboloid follow. 

Let U be a point on the forward unit mass hyperboloid with coordinates 

defined by 

(v:,  vL v~) = (v) = (v ~ 

1 [ l + V ' V v ]  
uU(v) = 1 - �88 T '  

The differential element is given by 

d w '  = # '  dv  a U~.a - 
,a , OVa 

where 

p %  = Mu~,,~ (a = I, 2, 3) 

and the p~ (a = 1, 2, 3) are given explicitly by (A.11). 
Define Aab by 

and A ab by 

then 

A a o  = - ~' u u ' ' '  OltV ~a~ ,b  

AabAbc = 8e a 

Aabu~',~,UV, b = UaU v _ gt, V 

The hyperboloid metric tensors are explicitly given by 

1 
A~b = [l - �88 v)] ~ '~~ 

A ~b = [ 1  - �88 a~ 
The interval is 

1 
[1 - � 8 8  ~ d,. ~v 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.2S) 

( d U )  2 = A~b d v  ~ dv  b - (A.29) 
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Def ine  

t h e n  the  i n v a r i a n t  m e a s u r e  is 

Coleman 

A = de t  (A~o) (A.30)  

d% 
dlz(U) = (A)1'2 dr1 dr2 dvS = [1 - �88 8 (A.31)  

The  Chr i s to f fe l  s y m b o l s  a re  de f ined  b y  

[ab, e] = ~ \--~Z-v~ + Or--- i- ~v ~ ] 
(A.32) 

(aCb)=A~ d] 

a n d  a re  g iven  exp l i c i t ly  b y  

1 1 
[ab, e] = 2 [1 - �88 3 (v~3b~ + Vb3c~ - v~3~b) 

( c b )  1 1 (A.33)  
a = 2 1 - �88 (v"3b~ + Vb~ea - -  l)e~ab) 

The  R i e m a n n - C h r i s t o f f e l  t ensor ,  de f ined  b y  

0 ( a d )  a ( b a c ) (  e ) ( a ) (  e ) ( a  ) R'~ ~;v~ b --ff~v a + b d e c - b e  e d 

(A.34)  

is j u s t  

1 
R.boa -- [1 --  �88 4 (3b~ -- 3~ ---- A~aAbc - A~oAba (A.35)  

The  L e v i - C i v i t a  t ensor s  a re  

1 
"abe = (a)Xl2eabo = [1 --  �88 3 eab* 

(A.36)  

1 
r = (A) ~-7~ e~bC = [1 - �88 ~bc 

where  e abe a n d  eabc are  c o m p l e t e l y  skew a n d  e 12s = e12a = 1. 

D e n o t e  the  c o v a r i a n t  de r iva t ive  b y  a s emico lon ,  t hen  

~2u~ f c \ Ou" 
llU'a:O = Ovael.) b ~ a  bJ-~v ~ = A~,~u" (A.37)  

a r e l a t i o n  k n o w n  as  G a u s s '  f o r m u l a .  
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The momentum-energy gradient (A.20) has the three-dimensional form 

= uS(v ) 0 1 A~b(v)u~(v ) ~v  ~ (A.38) 
Op u ~M M 

Given a Lorentz transformation A, write 

v' = A-  iv (A.39) 
where 

uU(v ') = A-  l"~u~(v) (A.40) 
then 

A s .,v t=,~ cqvb' ~.,~k., ~ = U."~(V) 
(A.41) 

~tP' 
~ v "  = - u ' " ( v ) A ~ u ~ ' ~ 1 7 6  

The second equation of (A.41) shows that the Jacobian is just the well-known 
Wigner rotation up to trivial stretch factors. From this fact, it follows that 
particle wave functions are just intrinsic tensors on the mass hyperboloid. 
Moreover, the correct momentum-energy gradient of such wave functions is 
given by applying (A.38), with O/av ~ replaced by the covariant 3/3v b. 

Finally, under a coordinate transformation, the Christoffel symbols 
transform according to 

Ovb~v * = b ~ -  d e  Orb av~ (A.42) 

Ovv Ov *" = ~ b c J -~v a -  e Ov a" ~v o" 

APPENDIX B: THE HERMITICITY OF X u 

First, consider the position-time operator defined in Section 2. Integrat- 
ing the first term of (2.6) by parts, one obtains 

-if d M  d/~(v)M3A'~(v) O~b*(M, v) uS(v)~b(g, v) 
0M 

f M=oo = - i  dt~(v)M3Aab(v)~b*(M, v)u"(v)6b(M, V)IM= o 

+ i f  dtL(M, v)Aab(v)~b*(M, v)uU(v) 0r v) 

+ 3 i f  dry(m, v) 1 Aab(v)~b*(m, v)uU(v)q~b(m, v) (B.1) 

On a curved space, it is permissible to integrate by parts in the usual 
manner provided that the appropriate covariant quantities are employed. 
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Thus the second term of (2.6) gives 

f 1 ~b*(M, v) i M 3 dM d/~(v) ~r Aa~(v)ACa(v)uU'c(v), ~v a ~(M, v) 

f ' [1A~b(v)aoa(v)uU, o(v)~b,(M,v)$b(M,v) ] = i M 3 dM d/~(v) y v  a 

~4,~(M, v) 
�9 ~v a 

f v)uU(v)~(M, v) (B.2) 
1 

- 3i dtz(m, v) ~r A C~b(v)~h* ( M, 

where the last term comes from applying the relation (A.37) and observing 
that Aca(v)Acn(v) = 3. The first term on the right-hand side of(B.2) leads to a 
surface integral at Ivl --- 2 (infinite momentum) which is assumed to vanish. 
The integrated terms in (B.1) may also be neglected. It is assumed that the 
wave functions decrease sufficiently rapidly in modulus as M - +  ~ .  If  (2.5) 
and (2.6) are well defined, then as M - +  0, the wave functions are not more 
singular than 1/M so that the integrated term for M = 0 must also vanish. 

Combining (B. 1) and (B.2), one readily obtains 

( x %  ~) = (~, x ~ )  (B.3) 

This derivation can, of course, be carried out using only the standard formula 
for integration by parts. Then, the work is most efficiently organized by 
expressing the partial derivative in terms of the covariant derivative and terms 
involving the Christoffel symbols. The numerous additional terms vanish in 
pairs. 

It is evident that the position-time operator for the case of a given fixed 
mass is also Hermitian. Integrating the first term on the right-hand side of  
(3.3) by parts gives the result in (B.2) apart from a change in the measure 
throughout. The second term on the right-hand side of  (3.3) combines with 
the last term of (B.2) to give the last term in (3.2). 

APPENDIX C: THE COVARIANCE OF X ~ 

For the operator X ~ given by (2.7), 

($, U -  ~(A)X" U(A)4,) 
= (U(A)~b, X~'U(A)4,) 

= f dt~(M, v)A~b(v)[U(A)~bl*(M, v) 

[ e lA~ • i uU(v) ~M (C.1) 
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Using (2.2) and (A.40), one obtains 

i f  dl~(M, v)A~b(v)[U(A)~b]*(M, v)u"(v) { [U(A)~b]b(M , v) 

= if dlz(M, v)Aab(v) a(A-Xv)*av,~ ~b*(M, A-~v) 

x A",,u~(A- ~v) ~(A- Xv) a 0Ca (m, A- ~v) (C.2) 0v b aM 

i ,, ~ i a@b = i f  d~,(M, A-Xv)A'~(A-~v)$*(M, A- v)A ~u CA- v)g-~ (M, A-Iv) 

f OCb (M, v) = A . ~  i d ~ , ( m ,  v)a~b(v)r v)u~(v) ~-~ 

Using (2.2), (A.41), and (A.42), one obtains 

- i f  dlz(M, v)Aab(v)[U(A)~bl*(M, v) 1 Aca(v)u.c(v ) 

= -if dt~(M, A-~v)Aab(v) 0(A-=v)'0v ~ ~h*(M, A-=v) 

x 1 A,a(v)ASu~h( A_ av) 0(A- ~v) ~ [0(A- ~v) r 0(A- ~v) g ~4,I(M, A- ~v) 
�9 ~176  L W~ o-Tz O(A-~v)" 

a=(A- Xv)' { / b }  0(A- ~v)" ] + OvaOvb Cr(M, A- iv) - 0v--------7~ $a(M, A- iv) 

= - if dtz(M, A- iv)A~ 0(A0v ~- lv)~ ~b*(M, A- ~v) (C.3) 

x ~ Aoa(v)A%u~a(A- Iv) 0(A- iv)~' [0(A- iv)t 0(A - Iv)~ 0q~,(m, A- iv) 
�9 8vC [ ~ Ova 0(A- iv) a 

f f }  ' 0(A- lv)k 0(A-iv)' Iv) ] 
- k l Ov a Ov b Ct(M, A -  

m 
= - iA% j dtz(M, A- lv)A'~b(A- Xv)~b*(M, A- Xv) 

1AOa(A_~v)uV,,(A_~v)[Ofb~ A- Iv) { } e  ' ] x tv)a b d  Ce(M' A-~v) 

= -iA%f dl~(M, v)A"b(v)$*(M, v)1A~a(v)u~o(v){ Ckb(M , v) 
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Hence 
($,  U - I ( A ) X u U ( A ) $ )  = Auv(~b, XV$) (C.4) 

The result (C.4) is also valid for the operator X u defined by (3.4) because 
the transformation of the first term follows the same pattern as in (C.3), 
while the transformation of the second term follows the same pattern as in 
(c.2). 

APPENDIX D: PURE LORENTZ TRANSFORMATIONS AND 
PARALLEL TRANSPORT ALONG MASS HYPERBOLOID 

GEODESICS 

Given two points U1 and U2 on the forward unit mass hyperboloid with 
coordinates vl = v(U1) and v2 = v(U2), respectively, denote the pure Lorentz 
transformation in the plane spanned by uU(vl) and uU(v2) which takes uU(v~) 
into uU(v2) by B(v2, vl). Then 

AB(vu, vl)A- * = B(Av2, Avl) (D. 1) 

If v = v(U) are the coordinates of a point U between U1 and U2 in the 
plane spanned by u"(v0 and u"(vu), then the point U traces out the geodesic 
between U~ and U= as the hyperbolic angle ~ given by 

cosh ~ = gu,uU(v)uV(vl) (D.2) 

increases from r = 0 to r = r where 

cosh ~12 = gu~u~(v2)u~(vO (D.3) 

Moreover, ~ is the length along the geodesic from 0"1 to U. (Compare with 
the analogous case on a sphere.) 

The Wigner rotation corresponding to the Lorentz transformation 
B(v2, vl) is given by 

R(v2, vx) = B(0, v2)B(v=, vx)B(vx, 0) (D.4) 

The task is to evaluate R(v + dv, v) to first order and show that (4.13) and 
(4.12) agree to first order. 

Using (A.37), one obtains to the order indicated 

u~(v + dv) = u"(v) 1 + (dr)2 + u'~a(v)dva + 2 a b u.c(v)dv ~ dv b 

(D.5) 

u.~(v + dr) = u~(v) + A~b(V)U"(V)dv b + ~aCb~u~.o(v) dv ~ 

where 
(dv) 2 = A~(v) dv �9 dv b (D.6) 
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Thus 
cosh (d~) = guvuU(v + dv)uV(v) = 1 + �89 2 (D,7) 
sinh (d~) -- d~ = dv 

The pure Lorentz transformation which takes v into v + dv is given by 

dv c ~ dv ~ 
B ( v +  dv, v) ~'~ =g~'~+ dv[uU~(v)--~u(v) - u,~(v)-~v uU(v)] 

( dv~ u~(v) _ n~V(v) dv~ ] 
= g#~ + nc~(v) 1 - �88 v) 1 - �88 uU(v) 

(D.8) 
From the second equation of  (D.5), one obtains 

dv ~ 
n~(v + dv) = n~U(v) + uU(v) 1 - �88 

(D.9) 
1 [,,~ d,,~ _a~  .] 

+ 2 _ 1 - - ~ v .  v) vOno"(v) 1 - �88 v)J 

Then the required Wigner rotation is given by [cf. (A.41)] 

R(v + dr, v)~b = -n~"(v + dv)B(v + dr, v),~nd(v) (D.10) 

To first order, one obtains 

1 [ dv~ dvo ] 
R(v + dv, v)~u = 3,~b + ~ [v ~ - v b (D.11)  

1 - �88 v) 1 -- 4T(v �9 v)'J 

Since R(v, v + dv)ab = R(v + dr, v)b~, it follows that  (4.13) gives (4.12) to 
first order. 

Define the 3 x 3 rotation matrices S~b 

(S.~)~a = - i(3,~c3ba - 3,~a3~,o) (D. 12) 

which satisfy 

[S~b, S~a] = --i(3a~Sba + 3baS~ -- 3,~dSb~ -- 3~S~d) (D.13) 

Then 
1 R(v, v + dv) = I + 2~,bSa~ 

l [ v a d ~  - vb dv~] (D.14)  
~~ = - ~ - �88 / 

Finally, the following expressions for the parallel transport  of  a Wigner 
vector through a finite distance along a geodesic are given without proof:  

~ ) ( v ,  l[ "-> v2) = R(v2, vl)ab~")(v0 (D.  15) 
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The rotation R(v2, v0 defined by (D.4) is explicitly given by 

2 
R(v~, vl)ab = 8ab - [1 - � 8 8  2 + ~ [ ( v 2  • v 0 - ( v a  • v 0 ]  

• {[1 - � 8 8 1 8 8  ~ - v~% a) + � 8 8 1 8 8  ~ 

+ � 8 8 1 8 8  ~ - � 8 8 1 8 8  ~ + v?vl~ 
(D. 16) 

That ~b~W)(v, [1 --~ v2) is a vector at v2 follows from 

[V(A)~](:'(v, I[ --> v~) 
- -  A (w) V - R(v~ ,  v O o ~ [ U (  )~,]~ ( 0 

= [B- I(v2)B(v2, v0B(v0B- I(v0AB(A- lv0]ab#~W)(A- %0 (D. 17) 
= [B- I(v2)AB(A- lv2)B- I(A- Xv2)B(A- lVz, A-  lv0B(A- lvx)]ab~b~(A- lvl) 

= [B- I(v2)AB- I(A - lv2)]ab~b[w)(a - %1 [1 --> a - lv2) 

set 

APPENDIX E: EVALUATION OF JU~ 

For an infinitesimal Lorentz transformation 

A - x u v  = g u y  _ ~o~,v (E.1) 

A-iv  = v + Av (E.2) 

Then, the first-order terms of the first equation in (D.5) together with (A.40) 
gives 

A v  ~ = � 8 9  ) - -  u~b(v)u~(v)) (E.3) 

Since the covariant derivative of Aab(v) is zero, 

Aa~(v + a v )  = Aa~(v)  - A ~ ( v )  c c 

Substituting (E.4) and the second of the equations (D.5) into (A.41), one 
obtains to first order 

Ov a --- 8ab - �89 - uVa(v )u~ 'e (v ) )ACb(v )"  " - -  a A d  

(E.5) 

Also 

a~b(v) ~bb(A-%) -- ~bb(v ) + ~ Ave (E.6) 
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Using (5.1) for infinitesimal o2 and (E.5) and (E.6) in (2.2), one obtains 

(I~')o~ = Ao~(v)i~tc~(v)[u~(v)u~o(v) - u'(v)u%(v)] 

+ i[u~.o(v)u~,o(v)  - u:~(v)u%(v)] (E.7) 
or 

J ~  = L ~ + S ~v (E.8) 

where L "v and S "~ are given by (2.16) and (2.15), respectively. 
For the case of  the more general representation given by (4.20), first 

evaluate the Wigner rotation [B- I(v)AB(A- ~v)]: 

[B- I(v)AB(A- lv)],,~ 
= --n~(v)A~nbV(v + Av) 

1 [ : A v  v -  vbAv ~] (E.9) 
= 8ab - �89 ~ -- na~'nb ~') -- ~2 t ] ":  ~(v.--~ "J 

Then, the infinitesimal form of (4.21) gives 

i 
D ~ [ B -  I (v)AB(  A -  lv) ] = 8a~ -- 7~ o2o,(no/~no" -- na~nbD)( S~b)a~ , 

i [VlAV:- -  vbAv~q 
-  vWv) (E.IO) 

Using 

ar 
~W)(A-lv) = ~<#W)(v) + ---}-Tg--Av c (E.11) 

along with (E. 10), (4.24) and the infinitesimal form of (5. I), one obtains from 
(4.20) the result (E.8), where L "~ is given by (4.25) and S Do is given by 

( S " ) ~ ,  = ~n , :nd '  - n,~nbD)(S~b)a~, (E. 12) 

APPENDIX F: SPIN WAVE FUNCTIONS 
AND PROJECTION OPERATORS 

As mentioned in Section 6, the unitary irreducible representations of  the 
homogeneous Lorentz group 0(1, 3) (Naimark, 1964) may be realized as 
unitary operators U(A): ~ ~ ~ ,  where A ~ 0(1, 3) and ~ is a Hilbert space 
with a basis {Ijm)} satisfying 

( j ' m ' l j m )  = 8j,jSm,,,, (F.1) 

The range of  the indices j, m is given by (6.3). If  B(v) ~ 0(1, 3) is the pure 
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Lorentz transformation which takes u"(0) into u"(v), then the functions 
Bj~(v, s, A) are defined by 

Bjm(V, s, A) = <jm I U(B(v))IsA > (F.2) 
Since 

Ujm ;rm,(A)By,m,(A- iv ,  s ,  A) = Uym :rm,(A)<j'rn'l U(B(A- lv))lsa ) 

= <jml U(A) U(B(A- ~v))[sa> 

= <jml U(B(v))U(B- ~(v)AB(A- *v))Is, a> 
= Bj,~(v, s, ?t')D~?a(B-I(v)AB(A-%)) (F.3) 

one has the relation 

Uj~ :r~,(A)Bj,m,(A- %, s, A) = Bjm(v, s, A)D~?~(B- ~(v)AB(A- ~v)) 
(F.4) 

which is useful for discussing the transformation properties of the wave 
functions. From the unitarity of  the representation, it follows that 

Jm 
(F.5) 

sA 

The relation 

Uj-~r,~,(A)Brm,(av, s, A) = Bm(v , s, A')D~(B-~(v)A-1B(Av)) (F.6) 

is useful in the discussion of the transformation properties of the field 
operators. Its demonstration is similar to that given in (F.3). 

The projection operator onto a subspace of  given spin s is 

Pr <*> (v)j,m, :m = ~ Bj,m,(v, s, a)B*=(v, s, A) (F.7) 
A 

Since an infinite-dimensional representation of  0(1, 3) is being used, the 
explicit expressions for these projection operators are more complicated than 
those obtained in the finite-dimensional spinor formalism. They can, how- 
ever, be expressed conveniently by means of  infinite products. Define 

1 W~nU(v) &(v) = 

where W, is given by (5.14). Then 

[St(v), St(v)] = ie,~eSk(v) 
and 

S,(v)S,(v) = -M------~ W~W ~ 

(F.8) 

(F.9) 

(F.10) 
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and 
S2(v)ym:rra,B~,m,(V, S, )t) = S(S + 1)Bjm(V, s, )0 

Sz(v)jm ;j-,ra, Bj,ra,(v, s,  ~) = ~Bjm(V , S, ~) 

In terms of the generators S ~v, one has 

S2(v) = �89 va - guvg,:aSU'Cua(v)gooSVPu~(v) 

For s ~ {�89 3, ~, . . .} ,  

Pr (~, (v)= ~ [1 --Sz(v)- .] /]--[  [ s(s + 1)] 
, ~  j ( j  + 1 ) J / ~  1 - - j ( j  + 1) 

(F.11) 

(F.12) 

(F.13) 

For s = 0, 

Pr~~ (v) = ] ~  I1 
J = l  

and for s ~{1, 2, 3 , . . . }  

Pr cs~ (v) = s(s + 1) 1 
8 

j ( j  + 1)] (F.14) 

j ( j +  1 ) J / ~ s  1 - j ( j +  1) 

(F.15) 

The infinite products in (F. 13), (F. 14), and (F. 15) are absolutely convergent 
since the series ~j 1 / [ j ( j  + 1)] is absolutely convergent. 

A P P E N D I X  G: LIGHTLIKE AND SPACELtKE MOMENTA 

The results of Sections 2-5 may be extended to the case of lightlike and 
spacelike momenta once a covariant momentum derivative for intrinsic 
tensors on the appropriate mass shells is defined. 

For the spacelike case, one may introduce the orthogonal curvilinear 
coordinates (s, ~, 0) by 

p~ = M ( s h  s, ch s sin O, ch s cos ck sin O, ch s cos ~ cos O) (G.1) 

Then the Riemann metric on the mass shell is given by 

1 
M 2  g ~  dp ~ dp ~ = cls 2 - ch2s dO 2 - ch2s cos 2 4, dO 2 (G.2) 

and the unit tangent vectors are 

ns ~ = (oh s, sh s sin 4', sh s cos 6 sin 0, sh s cos 6 cos 0) 
no ~ = (0, cos 4', - s i n  6 sin 0, - s i n  $ cos 0) (G.3) 
no ~ = (0, 0, cos 0, - s i n  0) 
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Given any two points A and B on the mass shell with coordinates 
( s (A ) ,  ~(A) ,  O(A)) and ( s (B) ,  (~(B), O(B)), one may take the vectors (G.3) for 
the point A and parallel transport them along the geodesic from A to B and 
compare the resulting unit vectors with the vectors (G.3) for the point B. 
The two sets of  unit vectors at the point B are related by an element of  the 
group 0(1, 2). This group element defines the transformation that must be 
applied to any intrinsic tensor at A in order to obtain the tensor parallel 
transported to B along the geodesic connecting A and B. In the present case, 
since a unitary spin basis is desired, the indices on the momentum wave- 
function label the basis for a unitary irreducible representation of the group 
0(1, 2) and the required transformation is the representation of  the above 
group element relative to this infinite component basis. The covariant mo- 
mentum derivative is defined in terms of  parallel transport in the standard 
way. It is interesting to note that covariant differentiation of  infinite com- 
ponent fields on de Sitter space-time may be defined in precisely the same 
way [with the groups 0(1, 4) and 0(1, 3) replacing the groups 0(1, 3) and 
0(1, 2), respectively]. 

Unfortunately, the case of  lightlike momentum cannot be treated in the 
same way because the intrinsic metric of  the (forward) light cone is degenerate. 
Introducing the orthogonal curvilinear coordinates (oJ, ~1, ~:2) by 

p~ = w[1, 1 _ �88 ~1 ~2 ] 
1 u �88 g)'l  + �88 E)' 1 + k(E. E) 

one obtains for the metric 

g.v dP u dP v = 

Together with p~'(w, E), the vectors 

(G.4) 

t t l  2 

[1 + �88 E)] 2 dE.dE (G.5) 

1 - � 8 8  _~i  _ ~  ] 
1 u �88 E)' i + �88 g)' 1 ~7 k(-E. g) 

I 
[- 

qU(w, ~) = - [1, 
O..I I_ 

1 ( 
n~"(~) = 1 + �88 O , -  ~,  1 + ~ -  

1 ( ~:2~1 
n2U(E) = 1 + � 8 8  0 , - r  2 ' 1  + - -  

form a complete set which satisfy 

p . p  = 0 = q . q  

p ' n r  = 0 = q .nr  

p . q =  2 n ~ . n s =  -3 r8  

(G.6) 

(G.7) 
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Under a Lorentz transformation, the vectors Aq(o~, ~) and An~(~) are related 
to the vectors q(Aw, A~) and n,(A~) by an element of  the group E(2). In order 
to define a covariant derivative, one must provide a standard Lorentz invariant 
rule for transporting the vectors (G.6) for a point A to any other point B on 
the forward light cone. At present, this problem is unsolved. However, once 
the decision to use infinite component fields has been made, a zero mass 
particle may be described by demanding that the wave function satisfy an 
additional equation of motion which expresses the proportionality between 
the Pauli-Lubanski operator and the four-momentum operator. 

APPENDIX H: THOMAS PRECESSION 

It was remarked in Section 10 that the expression for Thomas precession 
may be readily derived from equation (10.9) 

dSe~ {bac) dv ~ d,~- + SP b g-~ = 0 (H.1) 

First, it is necessary to convert from the basis u U~(v) to the normalized basis 
n~"(v) defined by (4.3) by setting 

The removal of this stretch factor results in the cancellation of one of the 
three terms in the Christoffel symbol of  (H.1). One obtains 

where 

dy, a 
_ f~byb = 0 (H.3) 

dJ"  

= 21 - �88 v~ ~ - v b (H.4) 

Equation (H.3) states that the spin vector precesses with the angular velocity 
given by (H.4). 

It is customary to employ an alternate parametrization for the four 
velocity, namely, 

dz ~ 1 
- (1 - 13. [3) ljz (1, 13) (H.5) 
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Then, 

and 

v =  2~, 
y + l  ta 

1 
v = (1  - ~ . L a ) ~ , "  

(H.6) 

Oab = Y +V 1 (fla --~ dflb - flo dfl~]dt ] (H.7) 

where t denotes the time in the laboratory frame and 

d~q" = y dt (H.8) 

For  a particle moving in a circle o f  radius r in the x-y plane o f  the labora- 
tory  frame with constant  angular  velocity co, 

X = r cos cot 
y = r sin cot (H.9) 
z = 0  

The only nonzero  components  o f  ~ are 

f212 = _f221 = ~ -  1 co (H.10) 
7 

dZ ~ 
dt y g ~ E ~  = 0 (H.11) 

I f  labora tory  time is used 

so that  the precession rate is given by 

yf~12 = (y _ 1)co (H.12) 
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